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A Domain Decomposition for The Transport Equation
LUCIA GASTALDI

Abstract. We apply the domain decomposition to a transport equation in two
dimensions and to its discretization by finite elements. The decomposition leads
to a family of problems coupled through interface equations (Steklov- Poincaré
equations), which are resolved via the Richardson iterative procedure.

In the mathematical modelling of several problems in Physics and Engineering
the following nonlinear hyperbolic equation arises

du

5 + divb(u) = f in 2x]0, T,

with initial and boundary conditions. Here {2 is a bounded domain in R? with
Lipschitz, piecewise C!'! boundary 92 and b is a vector valued function de~
pending on z,¢ and on the unknown u.

Using an implicit scheme to advance in time, combined with some linearization
technique we are led to consider the linear transport problem:

(1) { Lu = div(bu) +bou=f in

u=g on 3Qir,

Here b, by, f and g are known functions {which may depend on the values
of u at the preceding time step). In the boundary condition we have used the
following notation: for & C 89 (n outward normal) we set

Tt ={zef: (bn)(z) <0},
2o = {ze¥: (bn)(z) >0},
50 = S\(ZF uEew ),

where 3 is the largest subset of © where n is defined and Lipschitz continuous.
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We will assume the following hypotheses on the data:

(2) be Wh=(q), b € 1°(), f € L(0)
(3) —;—divb+b02ﬁ>0, in
(4 g € Ly (30™),

where for £ C 90
L3(Z) = {v: V[bnlveL*(E)}.

Under these assumptions, the solution u to (1) exists, is unique and satisfies:
(5) U,Ia()aut € L% (aﬂout).

In order to solve problem (1) we adopt a domain decomposition method asso-
ciated with the discretization by finite elements.

More precisely, let us partition {1 into two nonoverlapping subdomains Q; and
2, and denote by T' their common boundary, that is

I'=30;nQ=30,n( .
In addition, %" and I'¢®* stand respectively for the inflow and the outflow part

of I" with respect to {1;.
Then problem (1) is equivalent to the two subproblems:

Lu1 = f in Ql;
(6) uy = g on ANV" N N,

uy = ug on I'Y?,

Luz = f m Qy,
(7) up = g on 0™ N AN,

— in
ug = uy on I'y’,

Notice that the last boundary conditions in (6) and (7) express the continuity
of the solution along the interface, where T' is not tangential to the transport
field b. Hence the two subproblems turn out to be coupled unless either T'Y"
or 'Y are empty. In these cases we have a simplification of the problem: the
two subproblems can be solved sequentially by a single sweep; even more, when
both I'Y* and T'y* are empty, the two subproblems are independent from each
other. But when the streamlines cross several times the interface or there is a

circulating transport, the subproblems are strictly coupled and some strategies
are needed to resolve them in practice.

There are two possibilities: the first one is to introduce an iteration-by-
subdomain procedure, that is:
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(a) assign 47 in L (T'}*); _

(8) solve (6), with uy = ¢ on I'";

() set $3 =des uyjrout,

(d) solve (7), with uy = 93 on T'%;

() set i =des ugpgut;

(/) go to (b) and iterate.
Otherwise, we can reduce the coupled problems (6} and (7) to an equation
involving only the value along the interface. To this aim let us consider, for
every ¥; € L (T'"), ¢ = 1,2, the solution uy; of the problem:

Luy; = f in {;,

(8) uy; = g on IN™ N IQL",

Uy = 11),' on 1‘}",

Then we define the operators:

9) - ¥ 0 L2(I") - LE(I) i=1,2
bite b\t

given by

(10) E,: ¢i = uilli'f'?"’"

Then the Steklov-Poincaré equation is:

(11) S (52) =0,

where

(12) 8= (b.(;ll b-(z)nz> (—;1 ”?2)'

Once this equation is solved, we can reconstruct the solution in the whole domain
by solving the problems (8) for « = 1, 2.

To calculate a solution of the Steklov-Poincaré equation (11) we apply the
Richardson iterative algorithm:

(13) ("’;i) =(1+Q5) (ﬁg)

where

1 = = 0
(14) 2= (3, ?) (5 ——)

is the preconditioning operator.

We remark that the sequence, generated by this iterative algorithm, is the
same as the one produced by the iteration-by-subdomain procedure {a)-().
Moreover, the following convergence theorem holds:
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Theorem 1 For every {¢9,43) the sequence defined in (13) converges to the
solution of the Steklov-Poincaré equation (11).

This result {which holds under mild assumptions on the geometry of the in-
terface) is based upon sharp estimates of the LZ-norm of the outflow value of
uy; in terms of the L -norm of the inflow value v; (see [1] for the details).

Let us consider a regular and quasi-uniform triangulation T;(2) of Q compat-
ible with the partition, that is

T;"(Q) = U?:lTh(ﬂi)i
if £is a side of T € T}, such that TNT =4, {15)
then either £€ T, or £&T%", or £€ T

Then let X;; be the discrete counterparts of ¥;, obtained applying a finite ele-
ment method to approximate the solutions of problems (6) and (7). Hence given
(¥1h, ¥21), piecewise polynomial functions along I'® x T'i*, we have

(16) Ykt Yin Uh1|pouts
16
Yon : ton v Uny2|pguts

where upy1 and upyy are the approximate.solutions of (6) and (7).

Then the discrete Steklov-Poincaré equation is:

Y1n
17 S =0,
(a7 (b
where
_ b~n1 0 I —Egh
(18) Sh = ( 0 b-ng) (—zlh 1 )
Analogously, we can write also the discrete iterative procedure:
n+1 ,l’[)n
(19) (V) = we s (92,
2h 2h
where

(T Za\(wx O
(20) Qh - (Elh I ') ( 0 b.lnz .

In order to analyze the convergence of the discrete sequence defined in (19},
we must specify the finite element method we work with. Among the available
methods to discretize the transport equation, we have chosen the discontinu-
ous Galerkin and the streamline diffusion methods {see [2], and the references
therein). These methods are both consistent and enjoy the same accuracy prop-
erty. We describe briefly their application to the model transport equation {1};
the extension to the related subproblems is straightforward.
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The discontinuous Galerkin method consists in taking the subspace of L? made
by piecewise polynomial functions of degree k, Py:

Va(@)={ve LZ(Q) tyr € P.(T), VT € T}
Then the discretization of (1) reads: find uy, € V(1) such that Vv € V,,(Q2)

(21)
Z L‘(LUh_f) vdz = /anmbn(uh——g)v ds+ Z /aTmnnb-nT[uh]T(v)%v ds,

TeTh TETh

where we have used the following notation (nr unit outward normal to the
boundary of T):

(v)e = tl_i}g)r v(z + tng),

(v)f = tlilgx_ v(z + tnr),

[vlr = (v)7 - (v)5-

The integral along 3(2*™ enforces, in a weak way, the inflow boundary condition
of (1), while the sum in the right hand side expresses, still in a weak way, the
continuity of the discrete solution across the interelement boundaries, where
b-nr # 0. For this reason, when we apply (21) to the subproblems (6) and (7),
we obtain a scheme which is equivalent to the discretization of (1). Moreover,
the following convergence result for the discrete iterative algorithm to solve the
Steklov-Poincaré equation holds:

Theorem 2 Assume that the mesh is uniform close to the points of T' where
Ti" meets T“t, then the sequence (19) is convergent.

In the streamline diffusion method we consider
Cr(0) = Va(2) N C°(02),
then the discrete version of (1) reads: find u, € Cy(Q) such that Yv € Cr(9)

(22) E / (Lup — f) (v+ 8Lv)dz = / ~ bn(up —g)vds,
TeT T oar
where § = Ch, for a suitable positive constant C.

Also in this case the inflow boundary condition is imposed in a weak sense,
by the integral in the right hand side, hence the solution does not take the exact
value at the boundary. Therefore the discretization of the split problem (6) and
(7) is no longer equivalent to the discrete single domain problem (22). However
the two domain solution has the same accuracy as the single domain one.

The numerical results obtained confirm the theory presented. As an example
let us consider the following case:
Q=]-1,1]x]-11]
b= (-yz), bo=1 for (z,y) € Qo,
0, fz2+y*>1landz>0, y>0
f(z9) = { 1, otherwise,
9(11 y}=0, y€ ]0’ 1[’ .
glz,y) =1, elsewhere along 80",
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The domain (2 is subdivided into 3 =] —1,1[ x] — 1,0 and Q; =] - 1,1[ x]0, 1].
The mesh is uniform, generated by partitioning each side of ¢ into 2N equal
subintervals. The finite element spaces are made by piecewise linear polynomials,
and § = h in (22).

The related large, sparse, nonsymmetric algebraic systems are solved by means
of the Generalized Minimal RESidual algorithm.

Streamline Diffusion Discontinuous Galerkin
One dom. Two subdom. One dom. Two subdom.
2N Error Error NIT Error Error NIT
8 21441 .19760 6 .22587 22587 5
16 .15161 .14620 6 .14385 .14385 5
32 .11342 .11183 6 .09138 .09138 5

Table: L2-error and number of iterations (NIT) for different
values of 2N,

The Table shows a comparison between the L2-norm of the relative approxima-
tion error in the case of a single domain and of two subdomains depending on
2N. The number of iterations of (19) is also given. An overall comparison is
made between the two possible choices of finite element spaces (21) and (22).

Notice that the error is relatively large, due to the jump discontinuity of
the solution. However this error is ”concentrated” around the discontinuity
line. This feature is present both in the single domain and in the two domain
solutions. Actually, the two domain solution is as good as the single domain
one: in fact for 2N = 32 we have that the L2-norm of the difference beteewn
the two solutions is .5411E — 8 in the case of discontinuous Galerkin method
(21) and .1985E — 1 in the case of streamline diffusion method (22). The result
provided by the discontinuous Galerkin method is much better than the other

one, because the two domain problem is equivalent to the single domain problem
in the former case.

- The Table suggests also that the number of iterations of (19) is independent
of the mesh size.
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