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Domain Decomposed Preconditioning For
Faulted Geological Blocks

ADAM GERSZTENKORN AND J. C. DIAZ

ABSTRACT. The maturation of hydrocarbons in the earth is a complex phys-
ical process influenced by heat distribution, fluid flow, and geochemistry
over a geological time scale. Time-dependent geometry imposed by geolog-
ical faulting can further complicate the physics of the process. Due to the
different scales of thermal diffusion and geological events, it is reasonable
to assume that the temperature reaches equilibrium before further move-
ment along a fault is introduced. Here, the steady-state thermal diffusion
equation is solved using conjugate gradients (CG) with domain decomposed
preconditioning on a domain that assumes geometries imposed by vertical
faulting.

1. Domain Decomposition for Faulted Geological Blocks

1.1. Introduction. Numerical modeling of the maturation of hydrocarbons
in the earth is progressively becoming a more important tool in the oil industry.
Among the factors influencing the maturation process are heat distribution, fluid
flow, geochemistry and geological faulting over a geological time scale.

In this paper one aspect of the overall model is considered. The steady-
state heat equation on a domain that assumes geometries imposed by vertical
faulting is solved using CG with domain decomposition preconditioning. In
a physical sense, the steady-state assumption implies that temperatures have
reached equilibrium before movement along the fault imposes a new geometry at
some subsequent time. This is reasonable considering the time scales of geological
events and thermal diffusion.

Geologists have observed that block movement in the earth can cause changes
in the material properties of the fault zone, such as rock hardening. Since heat
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FIGURE 1. Geometry of moving blocks for two different configurations

flow across the fault is related to the material properties of the fault and bound-
ary conditions, the temperature distribution depends on both the domain geom-
etry and fault location.

1.2. Heat Flow on Faulted Geological Blocks. Geological faulting im-
poses time-dependent domain geometries as illustrated in Figure 1. The vertical
fault suggests a natural partition of the entire domain {2 into the two subdomains
Q1 and Q; and the fault domain 3, with 25 by far the smallest of the three
domains (exaggerated in Figure 1).

Portions of the subsurface can be exposed resulting from block movement.
This converts interior nodes to boundary nodes. Thus, boundary conditions
are dependent on the changing geometry. In addition, changes in the material
properties of the fault zone correspond to temporal variations of the thermal
conductivities in Qg.

Consider the numerical solution of a two-dimensional steady-state heat equa-

tion:
0 du 0 Ou
_$ (Cx-a_x) - a_y (cy%) = f’ («’1?,3/) € Qv

subject to Dirichlet boundary conditions on 8Q and where ¢z ¢y 2> 0. This
self adjoint elliptic partial differential equation has simple anisotropy when ¢, #
¢y The five-point finite difference discretization of the operator gives rise to
a symmetric positive definite linear system. This linear system can be solved
efficiently with the preconditioned conjugate gradient (PCG) method, provided
an appropriate preconditioning is used [2].

1.3. Discretization. A staggered grid is used for discretization of the PDE,
with thermal conductivities defined at locations midway between unknown tem-
peratures. This generates a symmetric positive definite linear system which is
solved via CG with domain decomposed preconditioning.

The ordering used within the three domains can be described as follows. In
(the left block) the nodes are ordered from top to bottom and left to right. In
(the right block) the nodes are ordered from top to bottom and right to left. The
discretization for {23 (the fault) consists of only two columus of nodes which are
ordered top to bottom and left to right. This ordering induces a preferred flow
of information in the incomplete factorization; information about the coefficients
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moves naturally toward the fault domain.

1.4. Matrix Structure. The domain ordering produces the following sym-
metric positive definite block linear system for the nth configuration of the pro-
cess:

An AR T w” by
Ay = A AR || w? | = B
A(n) A(n) A(n) ugﬁ) bg")

Movement of geological blocks induces changes on the linear system. Block
movement converts certain interior nodes to boundary nodes, The number of

nodes in the fault domain decreases with movement of the blocks. The order
of the submatrices A% = (A(”)) ,i=1,2, and A{Y, also decreases. Similarly
the solution ug") and the right hand side b;(;" also change in order. Changes in
the material properties of 3 can also cause variations in the coefficients of AQ}?.
The submatrices A;1 and Agy remain fixed with block movement.

The matrix A™ admits the following block LU factorization:

Ly L¥ Lyialm
Al Ly ¥ L é(n) .
AL AQLT 5™ ‘I
where L; is the Choleski fa.ctonzatxons of the ith, : ; = 1,2, diagonal blocks of
A™, And, 0 = AS - AP ATAD - A 414D s the Schur complement

of Ay, and 4gs on the ma.tnx A("‘)

1.5. Precondxtmning A precondmonmg counsists of an approximate factor-
ization of A, Let L;, i = 1,2, and L ) be some incomplete Choleski factors
of the diagonal blocks of A™. Then, M (%) is an approximate factorization of
A" and is defined as

L A ST
M (n) s Lg Lg’ L Uﬂ
Q(H)L;T 4(’?)L~T Af,(") I

When Mg " is an appropriate preconditioner for the Schur complement S,
the matrix M™ is symmetric positive definite (Goovaerts [3]). The solution of
Mz = r for a given vector 7, is obtained by solving the following systems:

Liyi = . Loys = 1o, ‘Jq Yy = s — AL Ty - AR LST
and
23 = 313- I-'le =y I’l IA(;:;)“S, Lg;g = ¥ L L!:; 33

The solution of these systems regnires two approximate solves in 2; and 5. We
do not use M'™. Instead we use ™) which is defined next and requires only a
single solve per subdomain.
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The domain decomposition variation of the above factorization approximates
AP ETY with A(P, (i = 1,2), which are equivalent to the stencils of the incom-
plete Choleski factors for £23 which communicate with Q; and Q3. The factored
preconditioning matrix M defined by this is

L I AR
MO = Lg LT Ag';)
AP AR i (E)"

The dependence on the block configuration (n) is restricted to {23 and the con-
nections it has with ; and .. Thus when the configuration of the blocks
changes, the incomplete Choleski factors only have to be updated for 3. For a
large number of configurations, the computational cost can be reduced.

The preconditioning application M (M z = r for a given vector r is performed
by solving the following systems:

i}1y1 =T1, z}zyz =73, z:(an)?la =73 — A;(,,'f)m - figg)y?
and

s T z i i A
(L.gn)) 23 = Y35 L,{zl =0 - Agg)23, Lglz =Yz - Agg)z‘?

Furthermore, parallelism is natural over ; and {2s.

Movement of the blocks requires an updating of the incomplete Choleski fac-
tors. However, the only incomplete Choleski factors required to be updated are
for the submatrices associated with the fault itself.

The domain decomposed preconditioning M () is equivalent to an incomplete
Choleski multiplicative Schwarz preconditioning with minimum overlap on the
subdomains. Minimal overlap implies that no two domains share any interior
nodes. A multiplicative Schwarz preconditioning with a larger overlap would
require updating a larger number of nodes in the overlap region when the coeffi-
cients in the fault change. A relationship between overlapping and-nonoverlap-
ping domain decomposition is given in Chan and Goovaerts [1].

1.6. Convergence and Example. In this section convergence properties
are examined; see Figure 2. An example of a sequence of block configurations
is also presented. The ICCG(0) incomplete factorization of Meijerink and van
der Vorst [4] is used on each subdomain with subdomain dependent ordering.
Convergence rates of the domain decomposition preconditioning are compared
for a single domain preconditioning and two different node orderings for the
three domain case without block movement. The orderings in Figure 2 are:
column ordering on a “single” domain where the columns are ordered left to
right; “inward” ordering with the columus ordered left to right in §; and right
to left in Oy (node order increases toward the faunlt); and “outward” ordering
with the columns ordered right to left in Q; and left to right in Q (node order
increases away from the fault). In each case the nodes within each column are
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FiGURE 2. Convergence properties
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FI1GURE 3. Coefficients and temperatures for initial configuration

ordered top to bottom. On the left of Figure 2 In || r* || is plotted for an 81 x
41 grid, while on the right the number of iterations for convergence is displayed
as a function of grid spacing. The coeflicients for these convergence rates are
described by the model on the left in Figure 3, where the contrast is 10 to 1,
with the light shading denoting a coefficient of 10.

The computational example includes block movement with a single fault
placed in the middle of a rectangular region. The coefficients and tempera-
tures are displayed for three configurations in Figures 3, 4, and 5, where light
and dark shades correspond to high and low temperatures respectively. The
region of high conductivities is being sheared by the block movement.

Computations were completed on a Sun 4. The stopping criterion used re-
quires that || 7¥ ||, < 107%|| r° || . The convergence rates indicate that the
domain decomposed preconditioning performed as well as a single domain pre-
conditioning. The convergence rates did not deteriorate as a result of the addi-
tional parallelism.
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