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A DOMAIN DECOMPOSITION METHOD USING SPARSE
GRIDS

MICHAEL GRIEBEL

ABSTRACT. We present preconditioners for linear systems arising from sparse
and full grid discretizations of PDE’s and discuss their application to the
domain decomposition method.

1. FULL AND SPARSE GRIDS, FULL AND SPARSE GRID PROBLEMS

We consider a partial differential equation
Lu=f

in the unit square Q = [0,1]2 ¢ R? with a linear, elliptic operator L of second
order and appropriate boundary conditions. For reasons of simplicity, we restrict
ourselves to the case of homogeneous boundary conditions.

For the discretization of the problem, we use a grid £2; ; with grid sizes h; =
27" and hy = 277 in 2~ and y-direction which is associated to the space V;; of
piecewise bilinear functions vanishing on the boundary. The dimension of V;; is
(28 — 1)(27 — 1) = O(2"19). The Galerkin approach now leads to the linear system
L; ju;; = f; ; that can be solved effciently by a multigrid method, for example.
Usually, an equidistant grid Q , associated to the space Vi with dimension of
O(22F) is used. Note that this space can be decomposed as

ko k
Vi = ZZV”

i=1 j=1
Alternatively, we consider the so-called sparse grid space

k k+1—i

V=YY Vi

i=1 j=1

with dimension ng , = (k — 1) - 2F — 1= O(k- 2¥). V%, is associated to the sparse
grid QF . (see Figure 1). Note that a product type hierarchical basis is advisable for
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the representation of a function of V;%,. For details, see [1], [10], [11]. The Galerkin
approach now leads to the associated sparse grid problem
(1.1) Li ki = Fog-

Note that L,f & is more densely populated than Ly ;. However, based on the hier-
archical basis mentioned above, there exists a product type representation of Lfﬂ E
allowing a matrix vector multiplication in O(nf ) operations.
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FIGURE 1. The sparse grid Qf , and the associated full grid (4.

While the full grid problem possesses O(4) unknowns, the sparse grid problem
(1.1) only possesses O(k - 2¥) unknowns. The accuracy of the sparse grid solution
ug ., however, is practically the same as for the full grid solution uy k. In [1] it is
shown that both |u — ug &|p and |[u—ug ;|5 are of the order O(27*), provided that

the solution u is sufficiently smooth to satisfy

ou*
IWI <C
Thus, it is often cheaper to solve the sparse grid problem instead of the full grid
problem. The solution uk r of (1.1) can be obtained efficiently by special multigrid

methods ([1], [6], [3]), that involve in general quite complicated data structures and
algorithms. In the following, we present a simple preconditioner for (1.1).

(1.2)

2. THE COMBINATION METHOD AS A SPARSE GRID PRECONDITIONER

Consider now the so-called combination solution

k -1
. p
(2.3) Up = E Ui fopl—q — g U i
=1 =1

that has been introduced in [4]. To obtain uf &+ We have to solve k different problems

Lijuy=fiji=1,..kj=k+1-—14, each with about 2% unknowns, and k — 1
different problems L; juig = fiji=1,..k—1,j = k — 4, each with about 2¢1
unknowns, and to combine their bilinearly interpolated solutions This leads to an
approximate solution of the sparse grid problem defined on Q . The method is
illustrated in Figure 2.

Note that the solutions of the different problems arising in the combination
method can be computed independently. Thus, the parallelization of the method
is straightforward. For results, see [2] or [8]. The solution of each problem is
computed on a standard grid. Thercefore, the complicated data structures and
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FIGURE 2. The linear combination of grids £; ; and solutions u; ;
withi=1,.k,j=k+1—dandi=1,.,k—1,j=k—i,k=4.

algorithms necessary for the sparse grid approach are avoided, and we can use
standard codes. A multigrid method with semi-refinement to cope with the grid
distorsion is recommended.

The combination method leads to the preconditioner

k k
S\ _ kk,S 11 ik+1—i kkSr—1 pik—i
(2.4) (Bk,k) = ZPz‘,k—l»l~iLi,k+l~iRk,k,S - ZPi,k—i Liw iBeys

i=1 =1

for the sparse grid problem (1.1). Here, P}’ ]’»k‘s : V;,; — V;5,, denotes the interpo-
lation operator and R;fk g: Vksk — V; ; denotes the restriction operator defined as
the adjoint of 2", RiJ o = (PEH5)T.

It can be shown that u{, = (Bf )~ fi - Note that the combination solution
ukck is not equal to uf , but a very good approximation to it. It can be shown that

(2.5) (B k) IR ) = 0Q2),

and by using the combination method as a preconditioner within an appropriate
iterative method like a conjugate gradient or a defect correction iteration, we obtain
a simple algorithm that needs a number of iterations independent of k to solve the
sparse grid problem to a prescribed accuracy.

However, since the discrete solution «5 differs from u by the discretization error
anyway, it makes no sense to solve the sparse grid problem to machine accuracy.
It is sufficient to perform only as many iterations as are necessary to reach the
discretization error. To demonstrate this and the property (2.5) we consider the
model problem Au = f with its exact solution z-(1—x)-cos(z-7/2)-y-(1—y)-cos(y-
7/2) and Dirichlet boundary conditions. We perform conjugate gradient iterations
for (1.1), preconditioned by (2.4). The convergence history of the iteration for the
cases k = 3,4....8 is shown in Figure 3 (left). We clearly see that the convergence
rate and thus the condition number of (Bf ,)L{ ;. are independent of k.

In the right part of Figure 3. we show a zoom of the convergence history for
the first two iteration steps. Additionally, we indicate where the discretization
error (horizontal lines) is reached. We see that the discretization error accuracy is
already gained after only one iteration step, where just the combination method is
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F1GURE 3. Convergence history of CG for preconditioner (2.4).

involved. Consequently, for any u that satisfies the requirement (1.2), the error of
the combination solution is within the discretization error accuracy and only one
iteration step is necessary.

3. THE COMBINATION METHOD USED IN A FULL GRID PRECONDITIONER

Now, we turn to the problem discretized on the full grid Qy ;.
(3.6) Ly st = ik

Let Pi’fj‘-k Vi; — Vi be the interpolation operator and let R” Ve — Vi

be the restriction operator defined as the adjoint of szjk, R'”’J = ( sz]’k)T The

preconditioner associated to the combination method can now be written as

k
- _ k. k -1 zk+1 % k.k ~1 zk—i
(3{) Bk:k'—zpzk—l-l —i k41— 1 Z'P’lk —5 g, k— 1, .

7

However, only functions of the sparse grid subspace V> i) are affected by By, and
it can be shown that By, is of deficient rank. An iteration for the full grid problem
preconditioned by By, ounly would converge to its fix point which is contained in
the subspace Vk'fk. However, the solution u i € Vi is never reached. In the
multigrid context, By ; can be considered as a certain sort of multivariate additive
coarse grid correction similar to [7].

Therefore, for the full grid problem we consider the following additive precondi-
tioner

(3.8) Cik = By +w - diag(L k) ™"

that exhibits full rank. It incorporates By i on the subspace Vk . and a Jacobi
type preconditioner on the full space V; . Here w is a properly chosen damping
parameter (w = 1.0, e.g.).

Let ®¢% denote the Gauss-Seidel iteration operator on grid € 5. Additionally,
we consider the multiplicative-iteration operator »

(3.9) My g = 055 - (Ink — Br L)
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that consists of the multivariate additive coarse grid correction induced by By
followed by one Gauss-Seidel smoothing step on the fine grid Qy 4.

It turns out that the condition number is no longer optimal. For properly chosen
w?

(3.10) K(Crk - Ly k) = O(k%)

holds where o was determined experimentally to range between 3 and 4. Anal-
ogously, the asymptotic convergence rate p(Myy - Li k) is dependent on. k. This
behavior can be explained by means of Fourier analysis. Compare also [9]. For our
previous model problem, the convergence history of the CG-iteration with precon-
ditioner (3.8) is shown in figure 4. For the MG-like iteration with operator (3.9),
analogous results have been obtained.
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FIGURE 4. Convergence history of CG for preconditioner (3.8).

Note however, that the number of iteration steps necessary to reach discretization
error accuracy is independent of k. We see in Figure 4 (right) that just one iteration
step is sufficient for our purpose. With respect to the Lo-norm, about two or three
iteration steps are necessary.

Thus, there is no use looking only for asymptotically optimal O(1) precondi-
tioners, if just discretization error accuracy is needed. We have seen that there
exist preconditioners with suboptimal condition number, but with associated itera-
tive methods where the number of iterations necessary to reach discretization error
accuracy is independent of the mesh size.

4. THE COMBINATION METHOD AND THE DOMAIN DECOMPOSITION METHOD

To combine the combination method preconditioner and the domain decompo-
sition method, basically two approaches exist.

The first one is straightforward. We apply the domain decomposition method
(outer loop) with quadrilateral domains and use (3.8) or (3.9) for the solution of
each subdomain problem (inner loop). To gain the advantages of the sparse grid
approach within the domain decomposition method, we can solve only the sparse
grid problem on each subdomain instead of the usual full grid problem by CG and
(2.4), e.g. In this way, we use just a certain sparse grid for the overall problem.
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Alternatively, the combination method can be applied globally (outer loop). See
also figure 5 for a simple example. Then, each arising subproblem can be solved by
the domain decomposition technique (inner loop).
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FIGURE 5. The linear combination of grids €2; ; and solutions u; ;
withi=1,.k,j=k+1—dandi=1,..k—1,j=k—~i,k=4for
the L-shaped domain.

In both cases, the parallelization possibilities both of the domain decomposition
method and of the combination method can be used simultaneously.

To show at last that the second approach involving the combination technique in
the outer loop works well also for more general problems, we study the Navier-Stokes
equations with complicated boundaries. We consider the example of a laminar flow
over the skyline of Munich (2D idealization) with Reynolds number Re = 500.
The discretization involves 33 quadrilateral subdomains with curved boundaries
and graded meshes to resolve the effects caused by singularities due to reentrant
corners. For each block & = 6 is chosen.

FIGURE 6. Laminar flow over the skyline of Munich, Re = 500.

Figure 6 shows the contour lines of the stream function computed for the sparse
grid discretization by the combination method. Accuracy experiments with suc-
cessive finer grids showed that the same order of accuracy was achieved with this
method as for the solution obtained for the full grid approach. Further experiments
and results can be found in [5].
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