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Implicit Domain Decomposition Algorithms for
Steady, Compressible Aerodynamics

WILLIAM D. GROPP, DAVID E. KEYES, AND JON S. MOUNTS

ABSTRACT. To render tractable the linear systems to be solved at each time
step, implicitly discretized compressible aerodynamics codes conventionally
employ an approximate factorization that introduces an error of first-order
in At. For steady-state problems, in which it would otherwise be desirable
to allow At to approach infinity, this factorization error may impose a more
stringent limitation on At (or the Courant number) than arises from any
other physical or numerical consideration. Furthermore, conventional fac-
torizations yield sparse block triangular or block tridiagonal systems not
ideally suited for large-scale parallelism. Despite the dual requirements of
high-order spatial accuracy and high Reynolds numbers in aerodynamic ap-
plications, “delta” forms of the governing equations with low-order upwind
implicit parts can be effectively preconditioned in a domain-parallel fashion
and accelerated by using methods of conjugate gradient type. We report
comparisons of a variety of global and domain decomposition-based pre-
conditioned iterative methods on Jacobians drawn from a two-dimensional
compressible Euler problem.

1. Introduction

Computations of steady transonic flow are often approached through a process
of semi-implicit pseudo-transient continuation: a time derivative is appended to
the governing Euler or Navier-Stokes equations, and the discretized time step is
chosen according to several interrelated criteria, including

e the ability of the algorithm to follow stably a nonlinear solution trajec-
tory from a conveniently specifiable initial condition to steady state,
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o the stability of the algorithm with respect to lagged boundary conditions
and any terms handled explicitly,

e the rate of convergence and overall cost of the iterative linear solver
employed to invert the implicit part of the operator at each step, and

o the accuracy of the “converged” update.

The size of the time step is often chosen locally in terms of a local Courant
number, C' = aAt/Az, where Az is a local representative cell dimension and a
a local signal propagation speed. Grid Courant numbers of order 10 are typical
in “production run” computations.

In this paper, we examine the degree to which sensitivity to the third and
fourth criteria above can be weakened or removed by replacement of a con-
ventional directionally split approximate factorization (AF) linear solver with a
multidomain Krylov solver. The ultimate practical value of such a replacement
depends on whether these criteria are the operative bottlenecks for At, which
will be problem-dependent, in general, The utility of powerful Krylov iterative
methods relative to conventional relaxation solvers in nonlinear elliptic systems
arising in subsonic reacting flows has recently been considered in [5], where it
was found that they can be significantly more efficient (e.g., threefold) in overall
execution time. In the context of transonic aerodynamics, a twofold improve-
ment in overall execution time was reported in [21] when ADI was replaced by a
conjugate gradient-square method employing ADI as a preconditioner. This im-
provement was obtained by raising the local Courant number from a maximum
tolerable value of approximately 13, when ADI was used alone, to about 40.

A major ultimate motivation of the present research, apart from allowing the
nonlinear solver to employ large time steps, is parallelism. Approximate factor-
ization solvers are notoriously sequential. A large variety of domain-decomposed
Krylov algorithms have been explored in [2, 3, 7, 8, 12]. These algorithms,
many of which are multigrid-like, have been developed for elliptic problems and
endowed with a rich convergence theory that includes convection-diffusion prob-
lems in the diffusively dominated limit. In this paper, we explore the performance
of a generic domain decomposition algorithm, additive Schwarz (without a coarse
grid), in a convectively dominated limit.

A brief description of the physical background and mathematical structure of
primitive variable transonic computational aerodynamics problems is provided
in Section 2. This is followed in Section 3 by a description of the domain-
decomposed preconditioned Krylov methods we employ on the discrete linear
systems. Section 4 includes the specifications of a classical computational aero-
dynamics test problem on which the methods of Section 3 are compared. Some
prospects are offered in Section 5.
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FIGURE 1. Global grid system for NACA0012 tests and enlarge-
ment in airfoil region. Labeled points correspond to Fig. 2.
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FI1GURE 2. Global grid system in transformed coordinates, il-
lustrating a 4 x 4 decomposition. Labeled points correspond to
Figure. 1. Dotted wake segments AH and EF coincide.

2. Approximate Factorization Euler Solvers

Our test Jacobians come from a two-dimensional transonic airfoil problem
modeled using the EAGLE Flow Solver [14], which is more generally capa-
ble of three-dimensional, multiblock thin-layer Navier-Stokes analysis. EAGLE
employs a finite volume discretization over a body-fitted coordinate grid. For
brevity, the only grid considered herein is the C-grid of 128 x 16 cells shown
in Figure. 1. The dimensions were chosen to allow balanced repeated bisection
into subdomains in both coordinate directions, not by truncation error criteria.
However, both the number and placement of the gridpoints are typical of Euler
meshes for this problem. (For Navier-Stokes simulations, much denser resolu-
tion would be required normal to the airfoil in its vicinity.) Figure. 2 shows the
logical tensor-product character of the grid. and the apportionment of grid cells
between the wing surface itself and the wake region.

The Euler equations for dependent variable vector @ = [p.pu.pr.e
expressed in strong conservation curvilinear coordinate form as

(1) Q-+ (F), +(G), = 0.

17 are
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where Q) and the contravariant flux vectors, F and G, are defined in terms of
the Cartesian fluxes and the Jacobian determinant of the coordinate system
transformation, J = ze¢y, — yezy, through

= JQ
= J! (ftQ +5$F+€yG)
= J! (mQ +nF + nyG) .

e e &

The flux terms are split into two parts: an implicit part chosen for conve-
nience in the inversion of the left-hand side operator, and an explicit remainder,
denoted R below. For this implementation, the treatment of the explicit and
implicit operators is patterned after {13]. The flux-vector split scheme of Steger
and Warming [17] is employed for the implicit operators, and for the explicit
operators we use the modified flux-difference split scheme of Roe [15]. Charac-
teristic variable boundary conditions are employed at farfield boundaries using
an explicit, first-order accurate formulation.

The two-dimensional Euler equations, being a system of four hyperbolic par-
tial differential equations, have associated with them at each point in the domain
four characteristic velocities. Numerical schemes for such systems are designed
to ensure that information is propagated in the local characteristic directions.
The characteristic velocities of this system are determined from the quasilinear
form of the implicit part of the operator in Eq. (1),

QT + AQ~§ + BQ*{N
where the flux Jacobian matrices A and B are given by
b pimpl ~impl
= — and B = —6G =
0 oQ

and the components of the characteristic velocities in the £ and 7 directions are
the eigenvalues of A and B, respectively.
Discretization then yields the form

?

(2) I+ Ar(8cAT + 6,Bf + 6:A7 +6,B7)] AQ™ = —ATR",

where § is the first-order spatial difference operator, superscripts £+ denote the
characteristic (upwind) direction in which the differencing occurs, and the bullets
signify that each spatial differencing is carried out on the entire product to
the right, for example, 8¢ on (ATAQ™). Note that, for a natural ordering of
the unknowns, A* and BT are sparse block lower triangular and A~ and B~

are upper. The standard solver employs a two-pass lower-upper approximate
factorization:

[I+AT(6:AT +6,BNH] X = —ArR",
I+ Ar(6cAy +6,B7)] AQ" = X.
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Other approximate factorizations of the left-hand operator of Eq. (2) sometimes
employed include block tridiagonals:

I+ AT(6:AY + 6:A7)] [+ AT(6,BF +6,8;)],

and block bidiagonals:
I+ AT(6:AD)] [I + AT (8, BN [I + AT(6:A7)] [I+ AT(8,B7)] -

3. Domain Decomposition Krylov Algorithms

The domain decomposition methods of primary interest here are precondi-
tioned Krylov methods for solving an n X n linear system, Au = f, that arises
from discretization of a differential equation. Krylov methods find the best
approximation of the solution u in a subspace {vi,va,...,tm}, with m < n
that is built up from successive powers of the matrix A on the initial residual,
ro = f — Aug. For Krylov methods to be effective, we must have m < n, which
is accomplished through preconditioning. For instance, instead of the original
problem, we may solve M4 = f by a Krylov method, where M = AB~! is closer
to the identity than A, and then v = B~'4. The matrix B (or its inverse) is
called a preconditioner, and a variety of parallel preconditioners can be induced
by decomposing the domain of the underlying PDE, finding the representation
of A on each subdomain, inverting each piece locally, and combining the results.

In effect, we seek to approximate the inverse of A by a sum of local inverses:

(3) B™'=Y"P.A; Ry,
k

where, Ry, is a restriction operator and Py a prolongation operator that re-
spectively take vectors spanning the entire space into and out of the smaller
dimensional subspace in which Ay is defined. To understand the potential ef-
fectiveness of B! so defined, recall that if A possesses a complete orthonormal
set of eigenvectors vy, with corresponding nonzero eigenvalues A, and we take
Ry =, A;l = )\kfl, and P, = v, then Eq. 3 gives an exact inverse to A. The
key feature of Eq. 3 for parallelism is that each term may be computed inde-
pendently of the rest. For arbitrary operators A it is difficult to find orthogonal
subspaces whose union is the complete solution space. but the subspaces induced
by domain decomposition provide a practical parallelizable compromise.

The simplest domain decomposition preconditioner is block Jacobi. Each grid
point in the domain of the PDE is associated with a single subdomain. For a
subdomain containing ny unknowns. Ry is an ng X n matrix of all zeros. except
for a 1 in each row, unique in its column. A is the corresponding ng X ng
diagonal block of A, the discretization of the homogeneous Dirichlet problem on
the k* subdomain. P is the transpose of Ry.

The convergence rate of block Jacobi can be improved, at the price of a higher
cost per iteration, with subdomain overlap. Though each grid point retains an
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association with a unique subdomain that will set its value, the data at border
grid points is exchanged with neighbors. The nj of the preceding paragraph is
replaced with a larger n . In this paper we consider only subdomain overlaps of
one mesh width, a limiting case of the additive Schwarz method [4] without a
coarse grid.

The convergence rate of additive Schwarz can be improved, at the price of
a lower parallel granularity, by enforcing a multicolored sequentiality between
the subdomain solves, just as Gauss-Seidel improves on Jacobi. See [1] for al-
gorithmic details. On a sequential computer, the most natural form of Schwarz
iteration is multiplicative, with as many colors as subdomains.

A large variety of domain decomposition algorithms exist, many of which that
share the preconditioned Krylov framework are surveyed in [11]. In the prelim-
inary studies reported here we have yet to incorporate two enhancements found
valuable in related investigations. In [10], in the context of multicomponent re-
acting flow, we replaced the A,:l with less expensive block-1ILU approximations,
A;l. In [1], in numerical experiments on scalar convection-diffusion problems
with large numbers of subdomains, we employed a coarse grid in the precondi-
tioner, adding a term RgA,:le to the sum in Eq. 3 to render the convergence
rate asymptotically independent of the number of grid points and subdomains
[4].

4. Numerical Results

To obtain a representative Jacobian/residual pair on which to test the meth-
ods of the preceding section, we ran a demonstration case from the EAGLE
code manual, a NACAQ012 airfoil ai an angle of attack of 1.25 degrees and a
freestream Mach number of 0.8, for 1,000 time steps at the recommended local
Courant number of 15, and used the resulting semi-converged result as the @
about which to linearize. The 2-norm of the steady-state nonlinear residual had
by this time decreased by a factor of just under 50 from its initial value, and
the residual curve had yet to attain terminal monotonicity. However, in the grid
of 2,048 cells, 127 were supersonic, and this indicator had stabilized for over
400 time steps. Plots of C), over the upper and lower surfaces of the wing were
qualitatively close to accepted results. At this stage, it would be useful to begin
taking larger time steps en route to a full Newton method on the steady-state
equations. However, as shown in Table 1, the AF linear solver was delivering
less than a factor of two residual reduction at a Courant number of 10, and at
Courant numbers of 100 or 1000 it was not improving at all on the initial iterate
of zero.

In the unstructured grid literature, it is established that preconditioned Krylov
methods can exploit high Courant number to outperform stationary iterative
methods. For example. in [20], an Euler calculation of flow over 5 NACA0012
airfoil at identical conditions was solved in approximately one-tenth the num-
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TABLE 1. Residual reductions (from an initial iterate of zero
for AQ™) produced by one step of the AF method in solving
Eq. (3) at five different Courant numbers.

Local Courant Number || 1071 7] 1 [ 10T ] 107 | 108
Initial Residual 7.30(5) | 7.30(-4) | 7.30(3) | 7.30(2) | 7.30C1)
Final Residual 456(-7) | 8.05(-5) | 4.49(-3) | 9.14(:2) | 2.37(0)
AF Reduction 0.0062 0.11 0.61 1.25 3.25

ber of time-steps and one-quarter the execution time when SSOR, was replaced
by ILU/GMRES. The former allowed Courant numbers of up to 25, while the
latter permitted 106, In Navier-Stokes turbulent flow over an RAE2822 airfoil,
the same authors had no practical convergence for SSOR, but were able to use
Courant numbers of up to 25,000 with ILU/GMRES. For this pilot study, we
considered Courant numbers of 10~! up to 103. Results for C = 1 and 100 with
a relative residual tolerance of 10 are tabulated in Table 2 for iteration count
and Table 3 for execution time on a workstation with a SPARC chip.

Tests were run using a package of sparse linear solver routines developed at
Argonne National Laboratory by Gropp and Smith [9] and designed for porta-
bility to distributed-memory parallel computers. The package is, in fact, being
ported to a variety of parallel architectures, but our use of it in the tables below
is restricted to a workstation. We tested GMRES [16], BiCGSTAB [18], and
TFQMR [6] as alternative Krylov accelerators. Differences between these three
methods in execution time were small, however, so we present only the GMRES
results. The maximum dimension of the Krylov vector space in GMRES was set
at the narrow dimension of the grid. Therefore, for the problem under consid-
eration, all iteration counts above 16 represent restarted GMRES (see [16]). To
produce the action of Agl on each subdomain we used direct elimination with a
nested dissection ordering. Thus, the 1 x 1 rows in Tables 2 and 3 correspond to
direct nested dissection solutions on the entire domain, with a small amount of
extra overhead in setting up unnecessary iteration. Nested dissection is superior
to natural ordering, and much less sensitive than natural ordering to the large
aspect ratios present in some of the stripwise decompositions.

Table 2 illustrates the generally superior convergence rates of additive and
multiplicative Schwarz (with an overlap thickness of one grid cell) over commonly
employed block Jacobi, particularly in the case of many subdomains. Stripwise
decompositions in both directions and boxwise decompositions are tested. An
interesting anomaly occurs in the boxwise decompositions for additive Schwarz
on the C' = 1 problem, where block Jacobi converges in fewer iterations than its
overlapped relative.

The execution times of Table 3 include both the significant preprocessing
time of the direct factorizations on each subdomain and the cost of iterating. In
applications, the preprocessing time would ordinarily be amortized over several
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TABLE 2. Iteration counts for transonic flow Jacobians at
local Courant numbers of 1 and 102, for various precondi-
tioner/decomposition pairs.

Precond. || Block Jacobi || Add. Schwarz || Mult. Schwarz
c 1 102 1 102 1 107
Ix1 |1 1 f1 1 |1 1
1x2 5 13 3 7 2 4
1x4 5 19 4 11 3 7
1x8 T 31 6 17 3 8
1x16 11 56 6 21 4 10
2x1 5 20 4 11 2 6
4x%1 5 20 4 12 2 7
8x1 51 22 4 15 2 9
16x1 6 31 4 23 2 17
32x1 6 60 5 45 4 37
64 x 1 8 109 6 56 4 40
128 x 1 13 207 i 80 4 50
2x2 4 14 7 14 2 7
4x4 4 18 7 i7 3 8
&% 8 5 28 10 23 3 8

time steps during which the linearized operator was frozen. Simple block Jacobi
is frequently the best method, in spite of its greater number of iterations. We
emphasize, however, that there are some inefficiencies in the handling of overlap
in current version of the code that will eventually be removed. We have italicized
any multidomain entry that costs more execution time than the corresponding
monodomain problem at the head of its column. The multidomain methods
are often less expensive than nested dissection on the full domain because the
cost of the direct solver grows superlinearly in the discrete subdomain size and
iterations beyond the first are inexpensive and (sometimes) few. Furthermore,
the multidomain methods have built-in parallelism in the preconditioner. As
an example, the 8 x 8 block Jacobi method appears attractive on the C = 102
problem. With its 28 iterations in 21.5s, it requires virtually the same time as
the direct method, but its potential speedup is as high as 64. Communication in
the inner products of GMRES and in subdomain border updating will prevent
realization of this full factor, of course, but it does perform without the need for
any global coarse-grid solution, which is the usual parallel bottleneck for domain
decomposition and multigrid methods.

We point out that ILU preconditioners based on the global grid are uniformly
more effective than block Jacobi or additive Schwarz methods relying on exact
subdomain solves in these problems. For instance, ILU-GMRES on the C = 102
problem requires 21 iterations and only 9.4s with a residual reduction of 1079,
compared with 28 iterations and 21.5s for 8 x 8-block Jacobi-GMRES. However,
ILU is more difficult to parallelize, and further comparisons involve machine-
specific issues. Based on the encouraging monodomain performance of ILU, we
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TABLE 3. Execution times (in seconds) for transonic flow Jaco-
bians at local Courant numbers of 1 and 102, for various pre-
conditioner/decomposition pairs.

Precond. || Block Jacobi || Add. Schwarz || Mult. Schwarz
C 1 102 1 102 1 102

1x1 [f212 209 [230 228 [[23.0 2238

1x2 142 196 17.0 19.8 17.3 18.7
1x4 9.0 17.2 15.1 20.6 15.6 19.1
Ix8 6.9 18.6 17.5 27.5 16.7 21.3
1x16 6.5 23.8 || 22.1 38.8 22.2 30.4
2x1 206 82.1 21.2 26.5 20.0 23.5
4x1 174 28.3 18.1 24.0 17.3 21.3
8x1 13.9 255 15.7 23.6 14.9 20.7
16x1 9.8 24.4 13.5 27.3 13.2 26.1
32x1 7.3 34.2 12.6 41.1 13.2 41.9
64 x 1 6.0 48.7 | 14.2 53.8 14.3 50.5
128 x 1 6.5 76.0 18.6 88.8 18.1 76.3
2x2 13.6  20.6 20.5 26.2 17.8 21.9
4x4 9.5 18.4 19.1 28.2 17.1 22.1
8x8 8.3 21.5 || 24.4 38.1 19.6 25.5

recommend examining a hybrid method in which ILU is employed in place of
nested dissection on the subdomains.

5. Outlook

The twin advents of parallelism and parallelizable implicit algebraic methods
provide an incentive for computational aerodynamicists to seek alternatives to
the communication-bottlenecked directional AF methods that lie at the heart of
many multidimensional production codes. Domain splitting is more natural than
general operator splitting on parallel computers, and has the added advantage of
leading to more robust linear solvers that do not retard the nonlinear convergence
with an error of first-order-in-At.

In this paper we have demonstrated the applicability of Krylov-accelerated do-
" main decomposition algorithms to a classic two-dimensional Euler test problem.
Relaxation of Courant number limitations necessary to exploit their potential
can be obtained by moving the remainder of the discrete operator from the
right-hand side to the left-hand side in a full Newton method approach. The
desirability and feasibility of Newton-based approaches have been declared in
the recent past [19, 22]. but held up by the cost and sequentiality of the sparse
linear system solution. Domain decomposition methods have a role to play in
the lowering this barrier.

Our preliminary domain decomposition tests do not include a coarse-grid com-
ponent in the preconditioner. nor relaxation of the exact subdomain matrix in-
versions to less expensive approximations. We anticipate improved effectiveness
when these algorithmic options are incorporated.
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