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Experiences with Domain Decomposition
in Three Dimensions:
Overlapping Schwarz Methods

WILLIAM D. GROPP AND BARRY F. SMITH

ABSTRACT. We have implemented the two-level overlapping Schwarz meth-
ods of Dryja and Widlund for coupled elliptic systems in three dimensions.
After discretizing the PDE using the finite element method, the resulting
linear system is solved by the preconditioned conjugate gradient method.
The preconditioner consists of two parts, a global coarse solver and local
solvers associated with overlapping regions of the domain. Numerical re-
sults on the Intel iPSC/860 on a convection-diffusion problem and linear
and nonlinear elasticity problems are presented.

1. Introduction

The two-level overlapping Schwarz methods, in their additive form, were in-
troduced by Dryja and Widlund in 1987 [12]. Several sets of numerical exper-
iments have been performed using these algorithms for scalar problems in two
dimensions, e.g., Greenbaum [16], Cai [5], and Bjgrstad and Skogen [2]. The
analysis was extended to non-self-adjoint problems by Cai [5]. Around the same
time, Mathew developed the algorithms in the case of mixed methods [20]. Ex-
tensions of the theory to many levels have been developed more recently by Dryja
and Widlund [15] and Zhang [26].

In this paper we report on numerical experiments using two-level overlapping
Schwarz algorithms for coupled elliptic systems in three dimensions. We have
found the convergence rates to be very good and believe that overlapping Schwarz
methods with small overlap offer great potential for the numerical solution of
nontrivial partial differential equations on massively parallel computers.
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This paper is organized as follows. In Section 2, we introduce the types of
problem we propose to solve. In Section 3, we introduce the overlapping Schwarz
methods and briefly review the analysis associated with them. This is followed in
Section 4 by a short discussion of practical issues related to implementing these
algorithms on parallel MIMD architectures. Section 5 is devoted to numerical
experiments on a scalar self-adjoint PDE, the equations of linear elasticity on
curved domains, a slightly nonlinear model of a vibrating piezoelectric quartz
crystal used in electronic products, and a non-self-adjoint convection-diffusion
problem.

2. Elliptic Problems

We are interested in nearly optimal algorithms for the solution of general,
uniformly-elliptic systems of PDEs that arise in an industrial context. We as-
sume that the nonlinear problems will be solved by solving a sequence of linear
problems. Therefore we focus in this paper on the fast solution of linear ellip-
tic problems, the equations of linear elasticity being a particular example. We
also restrict our attention to second-order problems. The overlapping Schwarz
methods apply equally well to self-adjoint and non-self-adjoint (subject to some
restrictions; cf. Cai [7]).

Consider the partial differential equation

- ZZZ £ 5 Bz + au; = f, in Q,
J

u=0, on I'y C 99,
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Using a Green’s formula for each component of v separately, we obtain the
variational problem

(2.1) ao(w,v) = f(v), weV, WweV,

where

antwe)= [ ST T souter i,
f(U)Z‘/QZfiUmL/FIZQiUi,

and V = {v € (H'(Q))? : v|r, = 0}.

We solve (2.1) using conforming finite elements; cf. [11]. This provides the
projection of the solution of (2.1) onto a subspace V* C V. This procedure results
in a large, sparse linear system of equations, A4 = f.
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3. Overlapping Schwarz Methods

The overlapping Schwarz methods are generalizations and alternatives to the
alternating Schwarz method [21]. The linear system that arises from the applica-
tion of the finite element method to problem (2.1) is solved by a preconditioned
iterative method such as the conjugate gradient method or GMRES. (The use of
an accelerator is not absolutely necessary; it does, however, improve convergence
greatly at very little additional cost and therefore is always recommended.)

For Schwarz methods (cf. Dryja and Widlund [14] and Xu [25]) the precon-
ditioner is constructed by solving a sequence of subproblems of the form: Find
Tie € Vih C V" such that

a;(T;e,v) = a(e,v), Yo € VI

In the case a;(-,-) = a(-,-), Tie is a projection of the error e onto the subspace
V*. The two most common preconditioners constructed in this manner are the
additive (Jacobi-like) and multiplicative (Gauss—Seidel-like) Schwarz precondi-
tioners. However, alternative approaches are possible; see, for instance, Cai and
Xu [9].

For the additive Schwarz preconditioner, the preconditioned system can be
written as

BylAG = ZTm = f,

where le is defined implicitly by the above relationship. We note that each of
the terms T;% can be computed simultaneously in parallel.
The preconditioned system for multiplicative Schwarz can be written as

BifAa=(I—-({I-Tn)--(I-To))a=f.

The subspaces are treated in a serial manner. This approach seems to suggest
less potential for parallel execution. In many cases, however, this need not be a
problem. We color the subspaces V;* so that subspaces of the same color do not
overlap, then update on all the subspaces of the same color in parallel.

In overlapping Schwarz methods the subspaces V}» ¢ VP are chosen in the
following manner. Assume that the domain is of diameter O(1) and the el-
ements are of diameter O(h). The domain € is divided into N overlapping
subdomains ; of diameter O(H). We assume that the overlap is uniformly
of diameter O(3), where 8 > 0. The subspaces are Vi = VP 0 Wy(8), where
Wo(%) = {v € (HY(Q))? : v = 00on 8Q; \ T'1}, i.e., we impose homogeneous
Dirichlet boundary conditions on the artificial boundaries and inherit the origi-
nal boundary conditions on the true boundary.

This is a one-level algorithm; as the number of subdomains, Q;, is increased,
the convergence rate deteriorates rapidly; cf. Widlund [23]. We therefore in-
troduce one more subspace, Vi, which will provide for global communication of
information at each iteration. We triangulate the domain with large elements
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of diameter O(H) and define V{* to be the finite element subspace of V defined
by these large elements. To get a multi-level algorithm, we simply apply the
algorithm recursively to solve the coarse problem.

We are now prepared to give the convergence rates for the overlapping Schwarz
methods. For the proofs we refer the reader to Dryja and Widlund [13], Widlund
[24], and Bramble, Pasciak, Wang, and Xu [3].

THEOREM 3.1. The number of iterations required for a fized relative reduction
in the energy norm of the error is bounded by C\/H/B. In particular, if the
overlap is of order H, then the number of iterations is bounded independent of h
and H.

We note that the matrix represemtation of T can be expressed as T, =
RT A7 R;A. The restriction matrix R; is a rectangular matrix that maps from
a global vector to a local vector that represents a function in the subspace. Its
transpose, RY, represents interpolation from the coefficients of a function on the
subspace to the coeflicients of the function on the global solution space. For the
local spaces, R; simply selects those coefficients associated with the nodes that
lie in €;. For the coarse space V!, R; has the same structure as the restriction
operator that appears in multigrid.

Remark: Multilevel Schwarz methods are conceptually not much different
from multigrid methods. The multigrid “smoothing” is replaced by “local solvers”;
in anisotropic, multicomponent problems where smoothing is ineffectual, solv-
ing small overlapping blocks exactly appears to make the method very robust.
However, for model problems a few sweeps of Gauss-Seidel are effective enough;
see Table 5. Thus the local solvers should be tuned to the particular problem
being solved.

4. Implementation

We have implemented the algorithms on the Intel iPSC /860 and on networks
of workstations using the p4 message passing package [4]. Most of the code is
completely portable across Unix machines, and only a few library routines must
be changed to run it under a different message-—-passing system.

To ensure maximum flexibility and code reuse, we have constructed a suite
of independent libraries including a communications library, a sparse matrix li-
brary, and an iterative solvers library. In all cases, the data structures for the
individual pieces are hidden. In this way, individual libraries can be changed
or optimized for a particular architecture without changing the application pro-
gram. ‘The results reported in this paper were obtained by using a prototype
domain decomposition code built on top of the libraries. We plan to make the
libraries available via anonymous ftp.

In the prototype code the coarse problem is solved in a Very naive manner;
it is solved simultaneously on all of the processors. As the number of Processors
is increased, the coarse problem becomes too large to be solved in this way. At
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this point, we will solve the coarse problem in parallel, probably by applying the
code recursively.

We have implemented the parallel communications in a semi-portable manner
by layering the software. On the lowest level, there is the machine—dependent
communication method, whether it be via special software/hardware or via Unix
IP/TCP sockets. At the next level are our generic message-passing macros,
which are automatically compiled into the appropriate machine-dependent form.
Above that is the BlockComm package of Gropp [17], which is a programmable
communications package. The user need give only the locations of the data
and when during the calculations the data is to be transferred. The details
of sending and receiving the actual message packets are all hidden from the
application programmer. The copies between domains in the serial version of
the code simply become calls to the BlockComm package in the parallel version.

On each processor, we store the vectors and pieces of the matrices associated
with from one to a small number of subdomains. For the additive variant, one
subdomain per processor is fine. For the multiplicative, we generally would like
to have a subdomain of each color on each processor. The size of the subdomains
is then determined by the amount of memory available to an individual proces-
sor. At the present time, 16 megabytes are available per processor on the Intel
iPSC/860. Modern workstations generally have around 32 megabytes of mem-
ory. For coupled systems in three dimensions this means that the subdomains
naust be rather small, containing only on the order of a few thousand unknowns.
We find for such problems that using an overlap of one element width provides
excellent convergence rates. This had previously been observed for scalar prob-
" lems in two dimensions by Bjgrstad, Moe, and Skogen [1], Bjerstad and Skogen
[2], Cai [5], [6], and Cai, Gropp, and Keyes [8].

5. Experimental Results

We present convergence and timing results on four different elliptic PDEs. The
first is a scalar example modeled on the Ellpack test problems. The second is the
equations of linear elasticity on a curved domain. The third is a slightly nonlinear
problem of a vibrating crystal. The fourth is a convection-diffusion equation
with recirculating flow. In all examples we use an overlap of one element. We
make the first problem trivial, to demonstrate that the condition numbers and
convergence rates behave remarkably similarly for the simple and more difficult
problems. The stopping criteria for determining iteration counts was a relative
decrease in the 2-norm of the residual of 107°.

5.1. Model Problem. We consider the scalar problem
(ezzyzuw)x + (7% uy)y + (1 + e~ Tsin(y))uz): = g,

on a rectangular parallelepiped with homogeneous boundary conditions. We
use piecewise trilinear elements. In Table 1, we give some sample results as
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the number of subdomains is increased. In this example the subdomains are
simply cubes. The column labeled “% Co.” gives the percentage of the solution
time devoted to constructing and solving the coarse problem, for a multilevel
implementation this time would be significantly reduced.

Remark: The condition numbers in Table 1 are not monotone because the
aspect ratio of the domain changes slightly as we add additional subdomains.

TABLE 1. Convergence for the Model Problem

Number of Number of Additive Multiplicative

Processors Unknowns | & Its. Time % Co.| k¥ TIts. Time % Co.
1 3,150 16.7 17 141 27 1.4 6 13.1 26
2 6,090 155 18 156 30 1.3 6 141 29
4 12,180 174 20 19.2 32 14 6 16.8 31
8 23,548 23.4 23 226 34 1.7 7 194 34
16 46,284 172 19 239 39 14 6 216 32
32 92,568 21.2 21 306 40 1.6 7 26.1 40

5.2. Equations of Linear Elasticity. We refer the reader to Smith [22],
and Zienkiewicz and Taylor [27] for a discussion of the equations of linear elas-
ticity and their solution using the finite element-method. We have chosen to use
the 20 node, isoparametric serendipity elements for this set of experiments. In
this section and the next, we concentrate on the additive form of the overlapping
Schwarz method since this requires us to store only one subdomain Per processor.

Piezoelectric Quartz Crystal

T TS Epoxy

Aluminum

FIGURE 1. The Domains for the Test Problems

We consider the cylindrical domain as given in Fig. 11. The cylinder is sliced
into cylindrical rings, and each subdomain is a quarter of one of the cylindrical
rings. It takes four colors to color the subdomains for multiplicative Schwarz.
In Table 2 we list some convergence results for a cylinder of internal diameter 2,
external diameter 3, and length 4. In the second set of columuns, labeled “com-
pressed cylinder”, the length is .4, but the number of elements used is the same
as in the first set of columns. This is done to observe the effect of changing the
aspect ratio of the domains and elements on the convergence rate. The num-
bers in parenthesis indicate the number of iterations required for multiplicative
Schwarz.

!Figure of crystal reprinted, with permission, from Jones, Plassmann [19]
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In Table 3, for a cylinder problem with 7,824 unknowns and eight processors,
we examine the behavior as Poisson’s ration, v, approaches the incompressible
limit. For the row labeled .3/.49, we alternated the values of v between .3 and
.49 on different subdomains.

TABLE 2. Convergence in the Cylinder Problem

Number of Number of Cylinder Compressed Cylinder

Domains  Unknowns | & Its. Time K Its. Time
4 5,040 22 26 (10) 348 95 51 (20) 439
8 9,576 21 27 (10) 35.2 92 51 (20) 44.3
16 19,152 31 33(12) 43.0 | 263 86 (34) 672
32 38,304 38 34 (13) 514 | ~813 152 (60) 111.9

TaBLE 3. Convergence for Different v in the Cylinder Problem

v K Its. Time
.3 14.8 22  26.7
.45 26.2 27 30.0
49 | ~50 39 342
3/.49 | 46.4 37 314

5.3. Anisotropic Vibrating Piezoelectric Crystal Problem. Piezoelec-
tric crystals (see Fig. 1) play an important role in most modern electronic equip-
ment. Their mathematical and numerical modeling is important in the design of
smaller and more accurate oscillators. Let © be an anisotropic dielectric crystal
and u(z) be the displacement of any point in the crystal and ¢(z) be the electric
potential in the crystal. We use a large displacement model of the crystal. The
full strain tensor is given by

1,0u; Ou Ouy, Ouy
_ + Z T
k

“i =5 5z T 9 oz, 0z,

The problem is nonlinear because we retain the cross—product terms above,
rather than dropping them as is done for the linearized strain tensor. The stress
tensor, o;;, and electric displacement, D;, are given by

do 9¢
Oi5 = Z Cijki€rl + Z Ckid G D; = Z €ijk€jk T+ ; dika.‘“'
Kl k Jk v

The tensors c;jxi, €kij, and d;; are the elastic stiffness coefficient, the piezoelectric
strain constant, and the dielectric permittivity, respectively. The PDEs are given
by Newton’s law and Gauss's law for dielectrics,

ag-j oD; .
Yo f. —2 =0, in Q.
; Brj fr 22: a-rz
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Natural boundary conditions are imposed except on a small portion of 6§ where
the crystal is fixed. Lagrangian P, finite elements are used to approximately
solve the variational formulation of the above equations. The derivation of the
variational formulation is given in Canfield, Tang, and Foster [10].

TABLE 4. Convergence for the Crystal Problem

Number of Number of
Processors Unknowns k Tts. Time % Coarse

4 4,320 4.8 25 23.0 14
8 8,460 46.8 18 245 25
16 17,100 203 24 350 37

In Table 4 we list some convergence results as we increase the number of
subdomains used in modeling the crystal. The column labeled “% Coarse” gives
the percentage of the total solution time devoted to constructing the coarse
system contribution to the preconditioner. As was stated above, at the moment
this is done in a naive serial manner, the time devoted to this when it is fully
parallelized will be smaller.

In the next table, Table 5, we compare the use of a few sweeps of SSOR-CG as
an approximate solver for both the model problem and the crystal problem. For
the model problems the mesh on the subdomain was 6 by 6 by 6; for the crystal
problem it was 4 by 5 by 3. We observe that the smoothing is very effective for
the model problem but essentially useless for the crystal problem.

TABLE 5. Convergence with Local Smoothing Vs Exact Solvers

Poisson Model Crystal
Number of Unknowns | 8,820 8,820 8,460
Exact Local Solvers 17 21 18
2 iterations SSOR-CG | 18 21 No Convergence
5 iterations SSOR-CG 21 26 320

5.4. Convection-Diffusion Problem. For our final problem we consider,
—Au + v(cos(x) sin(y)u, — sin(z) cos(y)uy — u,) = g,

on a unit cube with mixed Dirichlet and Neumann boundary conditions. The
PDE is discretized with trilinear finite elements using streamline diffusion, see
eg. Johnson [18]. The preconditioner is multiplicative Schwarz with eight colors.
In Table 6, we report on numerical experiments with 8 processors and 64 sub-
domains, using several accelerators; GMRES, transpose free QMR (TFQMR),
BiCG-stab, conjugate gradient squared (CGS). Since some of the the accelera-
tors require a different number of applications of the operator per iteration we
report normalized iterations (Norm. Its.); which is the number of actions of the
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operator on a vector that were required for convergence. In this problem there
are 22,707 unknowns, H = 1/4 and h = 1/28.

TABLE 6. Convergence for Recirculating Flow

v=10 v = 1000
Methed  Norm. Its. Time Norm. Its. Time
GMRES 7 16.7 30 30.9
TFQMR 10 18.6 42 35.2
CGS 10 18.5 42 35.0
BiCG-stab 10 18.5 38 32.8

6. Conclusions

Overlapping Schwarz methods have very good convergence properties for dif-

ficult coupled elliptic systems in three dimensions. Unfortunately, given the

present programming languages and software tools, developing parallel, portable,

and flexible codes that apply Schwarz methods for particular problems is diffi-
cult, error prone, and expensive. We hope that the tools we have developed will
make the transition easier.
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