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A Domain Decomposition Method for
Simulating 2D External Viscous Flows

J.-L. GUERMOND, W.-Z. SHEN

ABSTRACT. Two-dimensional external incompressible viscous flows are simu-
lated by means of a domain decomposition technique which combines a vortex
method and a finite differences method. The vortex method is used in the
flow region which is dominated by convection, whereas the finite differences
method is used in the flow region where viscous diffusion matters.

1. Introduction

It is a wellknown fact in fluid mechanics that, for incompressible viscous flows,
advection dominates viscous diffusion as the Reynolds number increases and, for
external flows, vorticity tends to concentrate in wakes. These conditions are
favourable for modelling such flows by means of particle methods. Furthermore
since this class of methods is grid-free, it is suitable for tackling problems with
moving boundaries. However, particle methods are less accurate as viscous effects
are of the same order as or larger than that of advection; as a result, in boundary
layers, ie. in the vicinity of physical boundaries, numerical approximations which
are well suited to parabolic problems are needed. The remarks above led us to
develop a domain decomposition method that combines both methods [6] [8].

2. Formulation of the problem

Consider p moving solids (S;)i=1,... » in a Galilean frame of reference (O, 4, )
of R%. Let k = i xj, define (O;)i=1,... p origins of reference for each solid, and let
v; (resp. ;) be the velocity of O; (resp. the angular velocity of S;). The solids
are immersed in an incompressible Newtonian fluid which is at rest at infinity.
The fluid domain, denoted by D, is decomposed into p + 1 open subdomains so
that D=Dg Uj=1,..p D;, where the subdomains D; are homeomorphic to a ring.
It is hereafter assumed that the domain decomposition has been done so that
convective effects are dominant in Dy. Let B; (resp. T';) be the interface between
D; and S; (resp. Dp), and n; be the outward normal to the boundary of D; for
i =0,...,p. The general strategy consists of replacing the original Navier-Stokes
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problem by subproblems in Dy, ..., Dp. In Dy the NS equations are formulated
in terms of velocity and vorticity (ug,wp) and are approximated by means of a
vortex method, whereas in each subdomain D; they are formulated in terms of
stream function and vorticity (1;,w;) and are approximated by means of finite
differences. Let T' > 0, the NS problem is solved in [0, T]. Let N € N, 6t = T/N,
and t; = k6t so that 0 < k < N; approximations of (ug,wp) and (¢;,w;) are
sought in parallel in the time interval (¢x, fxr1)-

3. A model problem

Each subproblem is wellposed provided that some transmission conditions
on the physical variables are imposed through interfaces I';. Such conditions
may be obtained by looking for an approximate parabolic decomposition of the
advection—diffusion operator as in [3]. Another approach consists in taking into
account the fact that in the vicinity of T'; viscous diffusion is dominated by
advection. In order to illustrate this point, consider the model problem below:

aw — vV2w + V. (wu) = f aw + V.(wu) = f
V3 = —w V) = —w
—p=g % =0
— OPfOn=h
D D
B ' T, 0

Domain D; is a vertical strip and Dy is a half plane. Parameters o and v are
positive constants and u is a constant velocity field. It is assumed here that
v is small and the solution is smooth enough so that vV?w is negligible in the
vicinity of I';. This model amounts to a crude version of the x-formulation of
NS equations as advocated in [1] [2].

In domain D; we have to deal with a biharmonic problem, which requires two
transmission conditions. Let G be the Green function of V? in IR?, an updated
boundary value of ?ﬁ!lf“ on I'; is given by the Green identity:

(1) k= / WFGdv + / 02C _ena,
DoUDy By 871:1

The transmission condition on wq is obtained by recalling that in the vicinity
of the interface w is almost solution to a hyperbolic equation of the first order.
For this kind of equation, information flows along the characteristics; hence, an
updated value of wy can be obtained by integrating the hyperbolic equation on
a small distance in the upwind direction. Formally this operation amounts to
enforcing the Robin-like boundary condition: aw + V.(wu) = f on I'y.

In Dy. the hyperbolic and elliptic equations are uncoupled, ie. the elliptic
equation does not need to be solved in Dy. Hence. a transmission condition is
required only by the hyperbolic equation. Once again, this condition is obtained
by formally imposing ouw + V.(wu) = f; this is done in practice by performing
an upwind integration. See [7] for other elliptic-hyperbolic coupling techniques.
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Figure 1: Comparison between numerical (solid lines) and experimental (sym-
bols) velocity profils. Dashes at x/r = 2 represent the interface I,

4. Solution in Dy

In Dy, the fluid motion is studied in a frame of reference which moves with<
the mean velocity of the p solids v (t). The advection—diffusion equation of wy
is approximated by:

(2) 3W0+1/6t+ v. (wk+1 k\ _ VVZ k+1
where, ub = —voo+/ kVkadv—i—Z/ [(n; X ve;) X VG+{(n;.v.)VG]dL,

and ve; = v; + €y x (y — O;). Eq. (2) is locally considered as a hyperbolic
equation whose rlght hand side, VV2w0+1 is a perturbation. In the framework
of §3, the required transmission condition is:

(3) i=1,...,p, whti(x) = w;“(w — ufét), if uf(x).ng(x) <0

Problem (2), supplemented by Dirichlet data (3), is approximated be means
of a particle method (¢f. [6] for details on this method).

5. Solution in D;
In D;, the fluid motion is studied in a non-inertial frame of reference that
is linked to S;, and NS equations are formulated in terms of relative stream
function ¥ and absolute vorticity w;. Hence, the PDE’s to be solved are:

(4) Ak /6t 4+ V.(WETIV x (FHE)) = vViwFT!
(5) V2,¢,$ﬂ+1 — 291 - wf—!—l

Note that this system has a form which is identical to that it would have if it
was written in an inertial frame of reference. This invariance with respect to the
frame of reference characterizes formulations of NS equations which are based
on vorticity. The system above is supplemented by boundary conditions on B;:

;k+1 k+1
(6) >zi'f+l=lﬁrgjl, dja—*—O and / 8;7% dl = —/ [k x (y — 0)].dl
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Figure 2: Streamline patterns about impulsively started tandem airfoils.

Furthermore, transmission conditions must be enforced across I'; as shown in §3.
The updated boundary value of wfﬂ is provided by the Green identity based
on (5) and (6):

() it @) = —tui(w) —/ WGy — x)dv
Dol

=1DJ'

P G(y — x) e
§ : . k Al — — )&
+ j:l‘\/Bj (1’06-7 + ij) anj dl /Bj G(y m) anJJ dl,

where Y. (z) = v;.[(® — O;) x k] — Q| — 0;|?/2 is the stream function of the
entrainment velocity field of S;. Note that condition (7) is global; ie, it transmits
the whole spectrum of information to each subdomain at once, whereas classical
Dirichlet-Neumann coupling conditions (eg. [7]) poorly transmit low frequencies.

By using the same arguments as that of §3, the transmission of information
on vorticity is achieved on the subset of I'; where the flow enters D; by:

(8) Wit (@) = wi(x — ukét), if ub(z)ni(z) < 0.

As far as information transfer is concerned, this condition should be sufficient.
Nevertheless, since (4) is approximated by means of a finite differences scheme
which is adapted to parabolic problems, a boundary value of w; on T; is required.
Once again, the flow regime being almost hyperbolic, the piece of information
that is missing is obtained by doing a Lagrangian integration of (4):

(9) wit () = wh(x — ubst), if uf(x).n(x) > 0.

The (v, w;) problem as formulated above is linearized and solved by means
of a finite differences method that has been developed in [4]

6. Numerical results

Consider an impulsively started cylinder of radius r. In figure 1, experimental
[5] and numerical velocity profils downstream the cylinder on the symmetry axis
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Figure 3: Shed particles and streamlines about a Darrieus windmill at t = 2.

are compared at time steps t = 1, 2, 3, 4, and 5. The finite differences subdomain,
D1, is a ring the external radius of which is 2r. The Reynolds number, v..r/v, is
set to 3000. Note the smooth matching of numerical results across the interface.

In figure 2 we present streamline patterns about impulsively started tandem
airfoils at times ¢ = 1.5, 2.5, 3.5 and 4.5. The leading airfoil oscillates in pitch and
the rear one is fixed. Shown here is the interaction between the rear airfoil and
the starting vortex of the leading airfoil. The fluid domain is decomposed into
three subdomains. The Reynolds number v,,C/2v is set to 3000, the reduced
frequency of the oscillating airfoil fC/2v,, is equal to 0.2 and amax = 45°. Note
that the tandem airfoil problem or other problems of this kind would be difficult
to treat by means of classical global approaches, for the flow domain would have
to be either regridded or deformed at each time step.

The last example has been designed to illustrate versatility of the present
method. In figure 3 is shown shed particles and streamline patterns about a
Darrieus-like windmill at ¢ = 2.2 after an impulsive start. There are four sub-
domains: one for each airfoil, one for the hub, and their complement Dy. The
windmill rotates in the anti-clockwise direction and the fluid moves from right
to left with velocity veo. Let R be the windmill radius, the advance parameter
QR/v is set to 2.16 and. the Reynolds number vor/v is equal to 3000.
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