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DOMAIN DECOMPOSITION
for the
STOKES EQUATIONS

mn

STREAMFUNCTION FORMULATION

Wilhelm Heinrichs

Abstract. Multi domain pseudo spectral approximation of fourth
order boundary value problems are considered. An iterative method
with interface relaxation is investigated. Numerical results are pre-
sented for two and more subdomains.

1. Introduction

We provide a theoretical analysis of the so called patching colloca-
tion method for the Stokes equations in streamfunction formulation.
This method was introduced by Orszag [5] for second order problems.
Suppose that the initial domain is decomposed into rectangular regi-
ons inside of which Gauss-Lobatto points are considered. Then, the
equation to be approximated is collocated at the internal nodes of
each subdomain, while continuity of the piece-wise polynomial solu-
tion and its derivatives up to the order three are required at the nodes
of the interfaces.
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This is the first treatment of domain decomposition methods for fourth
order problems. A theoretical analysis for the corresponding second
order problems was given by Quarteroni et al. [3]. We extend these re-
sults to fourth order problems. We investigate an iterative procedure
which corresponds to the Dirichlet-Neumann scheme for second order
problems. For making the iteration convergent we have to introduce
a relaxation parameter. We investigate different choices of relaxation
parameters. It turns out that the best interface relaxation is given
by a minimal residual strategy. We also present numerical results in
the case of more than two subdomains. For an increasing number
of subdomains the convergence of the interface relaxation becomes
very slow and for more than about ten subdomains the relaxation
procedure diverges. This is due to the fact that the interface matrix
becomes indefinite. At the moment it is an open question how to
construct an efficient preconditioner for the interface matrix.

2. Interface relaxation

We develop our analysis on a simple model problem. Given a
function f, we have to determine the solution u of the following fourth
order problem:

ulV =f in |-a,b,
(1)
u(—a) = v'(—a) = u(b) = u'(b) = 0.

As already observed in [3] for second order problems, the simple ite-
rative method which solves the fourth order problems on each subdo-
main alternatively does not in general converge. Certain restrictions
on a and b such as a > b are necessary (see [3, Prop. 2.1]). In [3] an
interface relaxation procedure is proposed which makes the method
convergent for all values of a and . We also prefer this procedure
for fourth order problems. Further, from the previous considerations
we obtain a quite natural splitting of the boundary conditions. The
relaxation procedure leads to the following algorithm. We look for
two sequencies of functions: ™ on | — a,0], and w™ on 10, b], with
n > 1, which satisfy:
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(n) _— ;
( Vieze = f in ] - a, 0[’

v (—a) = v (—a) = )
@) ) (-a) =v"(-a) =0
’l)(")(()):)\m

\ ’Ug:)(O) = fp

and
(wiR), =f in]0,b,
w™(b) = w{™(b) = 0,
(3) '

w{(0) = v{(0),

w2 (0) = v{(0).
In (2), A1, p1 are given real numbers, and the \,, u, (n > 2) are

recursively defined by the formula:

Ant1 Frw™(0) + (1 — 67)An,
fot1 = O"w™(0)+ (1 - O n, n2>1.

p ez

Here 0%, 67 €]0,1] are relaxation parameters. Let us first assume
that in (2) 6%, 6 are fixed independent of n. We write 8y, 6, instead
of 6%, 67. In the spectral scheme we choose v, w(™ € Py where
Py denotes the space of polynomials whose degree is less or equal to
N. We use a collocation method where the fourth order differential
equations are enforced at N — 3 Chebyshev Gauss-Lobatto nodes. In
(—1,1) they are defined by z; = cos 7\,7'{—5, j=1,...,N — 3. The fol-
lowing theorem clarifies for which parameters the interface relaxation
converges.

Theorem. The interface relazation procedure (2), (3) converges for
any value a and b provided 6, €0, 2], 4, €]0, %[ and

2—&0)‘

(4) 0<0, < —75.
~ 20,
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Here k is a positive constant, defined by

k=af—70 >0,

where o, B, 7y, 6 are given by

_ bB+3a%b+443 8= 3b2+a2+4ab
a= ¥ P T T 4w
b(b?—-a?) __ 3(b*—a?
V=T 0= "

In particular, in the case a = b one obtains convergence for all(6,,6,,)
€ ]0,1p2.

Proof. One easily verifies the result by studying the interface matrix.
87

If we want to find optimal relaxation parameters we have to determine
61, 6, in such a way that the spectral radius of A becomes minimal.
A short computation shows that the optimal parameters are given by:

1 1
(5) 0X10Pt = a’ 0}‘3°P‘t = -B_'

The corresponding spectral radius of A is: po(A4) = /1 - kfaf < 1.
Hence, if @ = b one obtains o = 0..: = 1/2 and convergence
after two steps. If a # b we do not have convergence after a fixed
number of steps independently of a,b. This result is really different
from the case of second order problems where the exact solution is
always obtained after two steps. A dynamical parameter choice is
obtained by applying a minimal residual relaxation (MRR). Here the
parameter is chosen such that the discrete L?—norm of the difference
between two iterates becomes minimal. Another attractive choice is
defined by the conjugate gradient (CG) method. The CG method is
applicable since the 2 x 2 matrix B is symmetric with respect to a
modified inner product. In table 1 we present the number of inter-
face relaxations for different a, b and parameter choices. It becomes
obvious that for b >> a the methods converge slowly. For all a,b the
MRR and CG methods yield the best interface relaxations.
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Interval lenghts Relaxation parameters
a b (5) MRR CG

2 2 2 3 3

4 2 16 11 4

2 4 25 13 4

8 2 19 18 4

2 8 79 17 5

Table 1. Number of interface relaxations.

Furthermore we were interested in the convergence behavior of the
interface relaxation in the case of more than two subdomains. Here
we consider the case of ng, ng € N subdomains. The interval [—a, b]
is subdivided in n4 subdomains [a;-1,4;], , i = 1,...,n, where

b
a; = —a+th, h= ot
Ng
for i = 0,...,nd.
Then we look for solutions u;, i = 1,. .., ng defined in the subdomains

[a;-1,a;]. Now the interface relaxation is formulated for odd ng, i.e.
ng € 2N + 1. Let A, pu2, 0%, 69, i =1,...,n4 be given real numbers.

2 1

Then the interface relaxation for ng subdomains proceeds as follows:

We look for ny sequencies u?, i =1,...,nq4, n > 1, which satisfy:
t odd :
u:’:zzzz = f in (ai—i7 ai) s
i=1: u(-a) = u,(-a)=0,
i>3: ul (i) = N7 ul(ain) = pf
i=mng: uf(b) = ui,(b)=0,
i<ma—2: uf(e) = g7 ul(a) = of
ieven :
uzzzzz = f in (0,,'_1, ai) ’
ul (aim1) = uig(ai1),
u::zzz(a’i"l) = u?—l,zzz(ai—l)’
ui(a) = ufy(a)

fu';{tzz(a‘i) = u?+1,zz (ai)‘
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Then set:
APo= fur(aia) + (1-0)AT
pr = 0. (aimy) + (1—0)up™t, fori=3,...,nq, iodd
o7 = buli(a) + (1-6)p7,
or = 0u,-_,_‘11,u(a,~) + (1—-8@)o? !, fori=1,...,ng— 2, i odd,

where ¢ denotes a positive relaxation parameter. The degree of par-
allelism of this algorithm is 3¢.

We calculated the number of iterations IT which were necessary to
reach an error of 10~° for the difference of two interface iterates. The
interface relaxation was started with the zero approximation. Fur-
thermore we calculated the medium error reduction factor p. The
corresponding numerical results are presented in table 2. It was also
observed that there are eigenvalues with negative real parts. Hence
the interface matrix B becomes indefinite and the interface relaxation
procedure will never converge. By applying GMRES to our problem
we obtained convergence in 4, 10, 16 and 28 iterations for 3, 7, 11
and 15 subdomains. The number of iterations seems to be linear de-
pendent on the number of subdomains. For an increasing number of
subdomains GMRES also becomes very slow and for more than 30
subdomains it also diverges. Furthermore we obtained similar results
for other splittings of boundary conditions.

nq IT »

2 2 —

3 27 0.184
4 72 0.772
5 182 0.927
6 462 0.968
7 1330 0.987
8 5476 0.997

Table 2. Numerical results for ny subdomains. *
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Similar results are available for the two—dimensional interface re-
laxation applied to the biharmonic operator. Here we also obtained
good results by using the MRR relaxation. The convergence once
more becomes slow for b >> a. For an increasing number of sub-
domains (ng > 20) the interface relaxation is no more efficient. For
ng > 35 it always diverges. Hence the same problem as in the one—
dimensional case occurs but somewhat later.
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