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Overlapping Domain Decomposition
Methods for Parabolic Problems

YU. A. KUZNETSOV

ABSTRACT. In this paper overlapping domain decomposition methods are
applied to the numerical solution of FE-systems with singularly perturbed
elliptic operators arising from implicit approximations of parabolic prob-
lems. The algebraic representation of overlapping domain decomposition
preconditioners as well as convergence estimates of the solution algorithms
are given.

1. Introduction

Recently, & number of methods based on domain decomposition ideas [7], [8]
has been proposed for the numerical solution of parabolic problems and algebraic
systems arising from discretization of these problems via implicit schemes [1],
(3], [4], [6], [9]. In this paper we continue the presentation of overlapping
domain decomposition methods proposed originally in [11] and developed in [12],
[13] for solving algebraic systems arising from mesh discretizations of unsteady
convection-diffusion problems via implicit schemes. For the sake of simplicity,
we reduce the presentation to a model problem.

Let © be an open bounded polygon in R? with the boundary 99, and I'y C
09 is a union of closed segments. Consider the unsteady convection-diffusion
problem: find u = u(x, f) such that

%+Eu=f in © x (0; Ag]

ot
u=0 onIqgx (0;At],
1) ou
— =0 onT;x(0;Af]
on

u(z,0) =u® inQ
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where At > 0 is given, ug is a given smooth function satisfying the homogeneous
boundary conditions from (1), Ty is a union of the open segments, i.e. ToNI'y = §
and 89 = Ty UT4, and an operator £ is defined by

(2) Lu=—vAu+ (bo V)u.

Here v = const > 0 is given and Fisa given smooth vector-function. The problem
(1)-(2) with sufficiently small At arises, for instance, from the approximation of
the Navier-Stokes equations by the operator-splitting methods [2].

The weak formulation of (1) is: find u(t) = u(z,t) € Vo, t € (0, At], such that

® (30 +a(w,0) = (7,0) Vo e,
where

(4) Vo=1{v : ve H(Q), v=0on Ty}
and

5) | a('u,,'u)=/(2[V~Vu0Vv+v-(goV)u]dQ

is the bilinear form generated by the operator £. It is a well known fact that
positive constants cp, ¢; and ¢y exist such that the inequalities

(6) collvllzr — c1||v||L2 < a(v,v),
a(u,v) < callullg - [Jvia

are valid, Yu,v € Vo. Here || - || g2 and || - [|f,, are the classical H*(Q2) and L2(2)
norms.

Let Qp, be a regular triangular covering [5] of  such that Ty NT'; belongs to
the set of mesh nodes, and V}, is the corresponding piecewise linear finite element

‘subspace of V. Under the assumptions made the standard FE-method coupled
with the Crank-Nicholson scheme: find u; € V;, such that

At 2
leads to the algebraic system

(1) (B2 ) a2 B oy = (£0) Wo eV,

(8) va = g,
where
(9) Aw =K + UJZM.

Here K is the stiffness matrix generated by the bilinear form a(-, -), M is the mass
matrix, and w? = Z. Note that the solution vector corresponds to the function
up — uo and a right-hand side vector g is defined by the residual functional

(10) £(v) = —a(uo,v) + (£, v).
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The matrix A, as well as the matrices K and M can be defined by the assembling
procedure:

(11) A, ={A%}, K ={K°}, M = {M*},
where K¢ and Me¢ are local stiffness and mass matrices and
(12) AS = K® +w’M".

These representations are very convenient for the description of domain decom-
position preconditioners, in particular those which will be defined in the next
section.

Tt follows from (6) that for any sufficiently small At (w? > 1) the matrix A,
is positive definite.

2. Overlapping domain decomposition preconditioners

), is a union of elementary cells (triangles) es. Partition Q}, into nonover-
lapping subdomains Q;Lk), k= 1,m. Every ng) is also a union of ej,. Define the
matrix A&k) related to ng) by

(13) AP ={43)
taking into account those cells e, which belong to Q%k). It follows that

(14) A __{A(k)}_ip [A&k) 0} PT
w T w _k=1 k 0 0 k

with suitable permutation matrices Py.

To define the required overlapping domain decomposition preconditioners we
embed every subdomain Qg“) into a larger subdomain ﬁg‘), assume that every
interior mesh node of €, belongs to the interior of at least one subdomain ﬁ%k)
and denote by ﬂf) the closure of aﬁfﬁ’ \ 9.

For every subdomain ﬁg“), we divide the set of mesh nodes into two groups:
the first one collects all nodes belonging to the interior of ﬁﬁf) and to 9, \f‘gk),
while the second one comprises those nodes which belong to ’I\‘;Lk). After that,
the matrix A\S,k) can be represented in the following 2 x 2 block form:
(3 2]

Ap;  Arr

(15)

We also introduce the matrices

nt
~ AP o0 0
(16) A,=P.| 0 o ofPf
0 00
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and
. [AP1 o0 o
7 Hy,=Af =P, 0 0 ofPf.
0 0 0

In this section, we first describe an overlapping domain decomposition (ODD)
preconditioner based on the superposition idea [11]. For the sake of simplicity,
we assume hereafter in this section that 8Q =T, i.e. Ty = §.

For every subdomain we define bek) a nonnegative diagonal matrix @y with
diagonal eleinents equal to one for every node belonging to the interior of ng)
and equal to zero for every node belonging to the interior of O\ Qgﬂ). Thus,

diagonal elements of Qj, corresponding to nodes of I‘,(Lk) = 6(2;:“) \ 09, are not
defined exactly. We assume that

(18) D> Qr=E,
k=1

where E is the identity matrix.
We define the required ODD-preconditioner by

(19) H=>" HiQ,

k=1
where Hy, are taken from (17). The motivation for such a preconditioner is that
in the case ng) = Qp, k =1, m, we have
(20) H=A4A"1,
ie. we get the (theoretically) optimal preconditioner. The reality is quite far
from (20).
Define the distance between I‘g“) and f‘;bk) by

(21) AT = inf oy
zel'y,
yer'®)

Let us assume that
29 (k). 77(%) l o
(22) 15mk.':)éxmd(I‘h i) > e In(eqw®)

with some positive constants €3, ¢4 and o. Then, according to the results from
[12], [13] the following proposition can be proved: for given positive constants c5
and (3 the constants c3, ¢4 and o in (22) can be chosen such that the inequality

(23) 1B - HAlL < =

w
is valid for all sufficiently large values of w. Here Il - Il is the finite-dimensional
analogue of the H'(Q) norm. In our case, the norm Il - l» is generated by the

matrix A, from (9) when 5(z) =0in Qand w? =y = 1.
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To analyze the above result we have to remind that w? = 7% and At is assumed
to be sufficiently small. It follows from (23) that the prescribed accuracy € for
the solution vector of (8) can be reached with preconditioner (19) even in one
iteration step. In fact, it can even happen practically that for this goal we have
to choose ng) = Qp, k =1, m. At the same time, this result is very attractive
at least asymptotically: for sufficiently small At the value of d(I‘;Lk) ; fg“)) can be
chosen like O(VAtIn ). ‘

More detailed analysis of the correspondence between constants in (22) and
(23) was done in [12] for the model convection-diffusion equation and in [10] for
the model heat equation. Numerical results on parallel computers were analyzed
in [14].

We define the overlapping domain decomposition preconditioner via restric-
tions by )

(24) H= f: QrHy.

k=1

Again, in the case ﬁ;bk) = @y, k =1, m, we get equality (20).

For preconditioner (24) the proposition, which was done for preconditioner
(19) is still valid. Moreover, under some special assumptions this proposition
remains valid for quasi-linear parabolic equations like one-dimensional Burgers
equation (such an extension was done by G. S. Abdoulaev, the paper will appear
in the second issue of the East-West Journal of Numerical Mathematics). For
quasi-linear problems the preconditioner H will not be a matrix any more. In
this case Hj, will be nonlinear subdomain solution operators, and Q; will be the
same matrices.

3. Applications and generalizations

Here we describe only one application and one generalization of the above
domain decomposition procedures.

‘The application of preconditioner (24) is related to the separation of the global
FE-problem (7) into several completely independent subdomain problems with
interface boundary Tj,.

We define I';, by

(25) = Jr®.
k

and embed T, into a mesh subdomain G, such that the inequality
(26) d(T's; 0Gy) > g-‘ In(crw®)

is valid with some positive constants cg, ¢7 and «. It follows from the above
proposition and the regularity of €2, that for given positive constants cg and 8
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the constants cg, c7 and a exist such that the inequality
- Cs
(27) lQe(A~" ~ Ho)gllue < Zlglar

is valid for all sufficiently large values of w. Here M is the mass matrix and

0 0

with a suitable permutation matrix Pg and Qr is a nonnegative diagonal matrix,
whose diagona) elements are equal to one for the nodes belonging to I'y, and zero
otherwise.

It is clear that components of the vector QrHgg can be used to divide the
global system (7) into /n independent approximate subproblems for subdomains
o),

Here we discuss briefly only one generalization of the above domain decom-
position procedures. Instead of (17) we define matrices Hy by

(k)1-1
(29) mo=r| W 0 2

, Az 0
(28) .%:m[G ]@

i.e. instead of the Dirichlet boundary conditions on ﬂ,k) we suggest to use the
Neumann boundary conditions.

It can be shown that all above theoretical conclusions are still valid. At
the same time, it is clear that the Neumann boundary conditions are much more
convenient for the construction of efficient inner subdomain iterative procedures.
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