Contemporary Mathematics
Volume 157, 1994

Overlapping Domain Decomposition
Methods for the Obstacle Problem

YU. A. KUZNETSOV, P. NEITTAANMAKI AND P. TARVAINEN

ABSTRACT. In this paper overlapping domain decomposition methods are
applied to the numerical solution of nonlinear grid variational problems
arising from the approximation of the obstacle problem by the piecewise
linear finite element method. This method is important for nonlinear
boundary value problems for two reasons: It provides the possibility of
using parallel processing, and, what is perhaps more important, the means
for isolating the neighbourhood of the free boundary for a special treatment.
In the major part of the domain the problem is linear and traditional
efficient solvers for linear problems can be applied. We give the sufficient
conditions of the convergence of the method and formulate the convergence
result. Moreover, we give some considerations about overlapping domain
decomposition methods with monotone operators.

1. Introduction

In this paper we consider the numerical solution of two-dimensional obstacle-
like free boundary problems by overlapping domain decomposition methods.
Domain decomposition methods are a widely researched area for linear problems,
but probably paper [8] was the first to use overlapping domain decomposition
methods for the solving of variational inequalities. Thereafter, quite a few papers
(for example, [1], [5], [6], [9]) have been issued on this topic. Our aim is
to consider different solution algorithms based on the domain decomposition
methodology.

We shall study the numerical solution of nonlinear grid variational problems
arising from the FE/FD-approximations of the two-dimensional obstacle problem
by domain decomposition methods. We formulate the method in the variational
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inequality form as well as give an equivalent operator formulation and the conver-
gence result,

Finally, in the last section we shall consider overlapping domain decomposition
methods with monotone operators. In this special case we can find properties
which are very useful when constructing numerical solution algorithms: we can
prove that with a suitable initial guess the algorithm is monotonically convergent,
and, using this result, we can find two-sided approximations for the location of
the free boundary and use this information to choose suitable domain decompo-
sition procedures.

2. Formulation of the problem

2.1. Differential problem.

Let 2 be a bounded domain with the piecewise smooth boundary J52, and let
f be a given smooth function. Then the obstacle problem is formulated in the
differential form: Find u € C*(Q) (such that 3 Lu a.e.):

Lu—f>0
(1) u>Y ae ind
(Lu—f) (u—9)=0
u=0 on 00 ,
where
(2) L=-VaV+b-V+e¢

is an elliptic operator, and the coefficients b = (b;,bs, ..., bp), p=1,2,3, a, by,
b2,...,bp, and ¢ are given smooth functions. We assume further that ¢ > 0 and
infoa > 0. 9 € C'(R) is an obstacle function such that 9|sq < 0.

Problem (1) can be presented in the variational inequality form: Let a(-,-) :
H() x H3(Q) — R be a bilinear form,

a(u,w) = / [aVu - Vw + (b V)uw + cuw] dS,
o

and

(fu) = [ fw dn.

9
We define a closed, convex subset K of H}(Q) by
K={v:veH}Q), v>¢ ae. in Q}.

Now the obstacle problem reads: Find u € K such that

(3) a(u,v—u) > (f,v—u) Yvek.
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It should be noted that in the case b = 0 the problem (3) is equivalent to the
constrained minimization problem: Find u € K such that

(4) J(u) = IIi[éiII} Jw), J:K—R, J()=alv,v)-2(f,v).

2.2. Mesh problems.

Let 73 be a mesh partitioning of  into triangles e;, i = 1,... ,k, and let V},
be the piecewise linear finite-element subspace of H}(2). We define a closed,
convex subset Kj by

Kp={v:veWV, v>,in},
where 15, is a FE-approximation of the obstacle function ¢. The finite-element
problem is: find up € K} such that
(5) a(un, v —up) > (f,v —up) Vv € Kp.
Using the standard finite-element discretization procedure this leads to the alge-
braic problem: find u € K such that
(6) (Au,v—u) > (fv—u) WweK,
where R
K={v:veR", v>4},
and f, 9 € RN : ¢; = ¢p(z:), z; € Q. The algebraic problem (6) has the
following equivalent formulation:
(Aw); > f;
(7) >, i=1,.,N (z; €M)
(Au—f)i-(u—9)i =0
We consider only two practically important particular cases. We assume that
A is either symmetric and positive definite or an M-matrix. The first case we
obtain immediately if the bilinear form a(-,-) is symmetric and positive definite.

Under such assumptions problem (7) is equivalent to the minimization problem:
find v € K such that

(8) J(u) = min J(v),
veEK

where

©) J(v) = (4v,) = 2(v, f)

is the energy functional. To satisfy the above conditions we have to assume that
b = 0. This case is investigated in details in [3], [4], [8].

To satisfy the condition that A is an M-matrix is a much more complicated
task. Within the finite element approximation it can be reached under the
conditions b = 0, ¢ = 0, and angles of triangles e; are sufficiently regular[2].
To obtain the M-property in more general situation we have to combine the
FE-approach with other approximation procedures like mass lumping, upwind
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schemes and finite difference/finite volume schemes. In the latter case the mesh
problem should be formulated in terms of mesh functions: find a mesh function
up, such that

Lrup > fr
Up > P in Qp

(Lrup — fr) - (un —9p) =0
up =0 on 08,

(10)

which leads to the corresponding algebraic problem (7). Here £, is a monotone
mesh operator, fy, and vy, are mesh approximations of f and v, and p, and 89,
mesh partitionings of £ and 99, respectively.

3. An overlapping domain decomposition
method for the obstacle problem

In this section we shall formulate the overlapping domain decomposition
method for the finite-dimensional obstacle problem presented in the previous
section.

We decompose the original grid domain 5, into m overlapping grid subdo-
mains Qs) , i.e.

m e
o= JoP,
i=1
such that every mesh node z belongs to the interior of at least one subdomain
Qf:). We denote §); = ﬂf:) to simplify the notations.
For a given grid function wy, € K}, and a grid subdomain Q; we define a subset
Kp(Q;wy) of Kp, by
Kpn(Quuwp)={v : veEKy, v=1wp in Q\Q}.
Now we can formulate the iterative procedure - the overlapping domain de-
composition method - for the obstacle problem:
ALGORITHM 1. Let u:+# € Ky, be given, k > 0, i > 0. Solve successively for
) 1 L
k=0,1,..., and i = 1,... ,m, the subproblems: find u:+ m e Kh(Qi;u:+’")
such that
ko BEL kL k- iEL X
(11) a (uh+ ™ ,v—uh+ " ) > (f,'u —u:+ m ) Vv e Ky, (Q,-;uff’") .

Algorithm 1 has also an operator formulation: by rewriting (11) in the terms
of the operator T; = T((;), we get: u? € Kp,

up™ = Tuf = T (T (.. Ty (ud) ... )), n=0,1,....

REMARK 1. This method can be easily formulated in terms of mesh functions
and finite-dimensional vector spaces as well.
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THEOREM 1. Under the assumptions made the overlapping domain decompo-
sition method converges for any u) € Kj,.

4. Overlapping domain decomposition
methods with monotone operators

The final part of the paper considers overlapping domain decomposition meth-
ods with monotone operators. Previously, some aspects for this topic were given
in [1}, [7], [8], [9]. In this section we do not separate the finite and infinite-
dimensional cases: the results given below are valid in both cases.

4.1. The convergence result.

Let us consider a subdomain problem defined in Algorithm 1 in the previous
section, i.e. for a given subdomain § C € and for a given function w € K, we
define

(12) K(Siw)={v : veK, v=winQ\ S},
and, find u € K(S;w) such that
(13) a(u,v —u) > (f,v—u) Yv € K(S;w).

Correspondingly, we give an operator formulation with the operator Rg:
(14) u = Rs(f;w) .

‘We make the following (monotonicity) assumptions for the operator Rg:
L. f< fi,w<w = Rs(f;w) < Rs(fi;w1),
2. Rg is continuous.
Let us consider an iterative procedure, similar to Algorithm 1 in Section 3.

n i
Partition © into overlapping subdomains, @ = |J Q;, and let u**% € K be
=1

given, k > 0, i > 0: Find uk i € K(Q,-;uk+%) such that (i = 0,... ,n — 1,
k=0,1,...)

(15) a (uk+%,v - uk+”Tl) > (f,v - uk+f%) Vo € K (Qi;uk+%> ]

LEMMA 1. Ifu® € K and a(u®,v) > (f,v) Vv € H}(R), v >0, thenV £ >0
we have
(i) u* > u*+ >4 in Q;
(i) u* = ukt! <= uF is the solution function.

REMARK 2. The latter assumptions can be established very easily for the
bilinear form generated by operator L from (2) as well as for the corresponding
mesh problem if A is an M-matriz.

Lemma 1 has a useful consequence when we consider the obstacle problem
as a free boundary problem, i.e. as a problem to find the boundary OG of the
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contact region G, where the solution function coincides with the given obstacle
function,

(16) G={z : z€Q ulz) =9y()}.

We define a subdomain G C Q by

(17 Gr={z : z€Q; uf(z) = P(z)}.
COROLLARY 1.

(18) ' Gr C Grya -

Using Lemma 1 we can prove

THEOREM 2. Under the assumptions made the overlapping domain decompo-
sition method is monotonically convergent.

4.2. Two-sided approximations for free boundaries. -

Theorem 2 gives us a sequence of “free boundaries” 8G &, Wwhich monotonically
approaches the free boundary 6G. In fact, by using the sequence {Gp}y, it is
possible to find two-sided approximations for the free boundary. Namely, let
uf € K and G C Q be given. If we solve a linear problem: find 4% € H(Q),
@* = 4 in Gy, such that

a(@*,v) = (f,v) Yve H{Q\G),
and define a new set by

Gr={z : 2 ") <o)},
we obtain

THEOREM 3.
Gr1CGrCGCGLC Gy .

This result is naturally an important theoretical observation, but it has advan-
tages in the practical computations, too. Namely, it gives two-sided approxima-
tions for the free boundary, which permit us to decompose the original domain
into subdomains with linear and nonlinear subproblems on every iteration step.
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