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An Iteration Scheme for
Non-Symmetric Interface Operator

C.-H. LAI

ABSTRACT. A non-overlapped domain decomposition formulation based on
the concept of simple shooting method is presented. A fixed point iteration
method without preconditioning of the discretised interface operator is ex-
amined. An adaptive parameter based on a simplified version of e-algorithm
to accelerate the fixed point iteration is studied.

1. Introduction

In the past couple of years, there has been significant development of do-
main decomposition preconditioners for conjugate gradient methods. Much of
the research has been primarily directed towards finding good preconditioners
for symmetric linear systems arising from finite difference or finite element dis-
cretisation of elliptic boundary value problems [1,2]. There is also some work
on non-symmetric problems [11] which is again based on domain decomposition
preconditioners for conjugate gradient type of iterations. In particular the gradi-
ent type of iterations is applied to the entire discretised system, i.e. the domain
decomposition is applied at the level of the solution of system of linear equations.

We employ a domain decomposition formulation based on the concept of a
simple shooting method and examine a fixed point iteration technique applied
to the interfacial system[6]. The motivation here is to study a cheap adaptive
parameter, initially without preconditioning of the discretised interface operator,
to enable acceleration within a fixed point iteration approach. We remark at this
stage that the fixed point iteration technique can be used in conjunction with a
preconditioner [5].
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The basic idea behind a shooting method for the solution of linear 2-point
boundary value problems is to assume the derivative of the solution variable at
one end of the domain of interest. In terms of difference equations, the idea is to
assume a value at the nodal point just in front of the end point, and hence the
difference equation can be recurred as far as a second order 2-point boundary
value problem is concerned. Based on this calculation, a numerical value at the
other end of the domain of interest is obtained. This value is obviously not equal
to the boundary condition at the other end. Therefore another approximation
at the nodal point just in front of the first end point is assumed and the above
recurrence is carried out again to obtain another numerical value at the other
end. Finally a linear combination of these two numerical values should equal to
the boundary value at the other end point and hence the linear 2-point boundary
value problem is solved within two iterations.

One obvious disadvantage of the above method is that the two random as-
sumptions at the nodal point just in front of the first end point can produce a
trivial value or a large value at the other end point. Hence a linear combination
does not produce the correct answer. One way to tackle this problem is to choose
the shooting point at the middle of the domain [3], i.e. very large numbers can
be avoided by recurring from each end and matching in the middle. The choice
of matching in the middle forms the basic idea of our two subdomain approach.
Another disadvantage is that the rounding-off error is large whenever a fine grid
is used. Hence the numerical solution is only accurate at one end of the domain.
One way to tackle this problem is to use multiple shooting method. This idea
forms the foundation of our multisubdomain approach.

Our attention is focused on the idea of choosing the shooting point at the
middle of the domain in conjunction with a finite difference technique applied
to the subdomains separated by the shooting point or the interface as used in
domain decomposition methods. Such an idea was initially developed in [6,9].
Similar approach for systems of 2-point boundary value problems was reported
in [4], in which multiple shooting algorithm is applied in a domain decomposition
context.

2. Two Subdomain Case

We confine our current study to the following 1-D homogeneous differential

equation
d? d¢
1 —_——— rr— =

(1) 2 +c(:1:)dz+r(x)¢ 0, a<z<b,
subject to Dirichlet boundary conditions ¢(a) = ¢, &(b) = ¢, c(x) and r(z) are
both continuous ina < z < b, and 0 < (; < () <Cu 0K R <1(z) <Ry Tt
is obvious that a unique solution exists for the boundary value problem given in
(1). The current approach to the exact solution of the above problem is obtained



AN ITERATION SCHEME FOR NON-SYMMETRIC INTERFACE OPERATOR 281

by considering two related boundary value subproblems as below,

(2) ‘3“21 + (w)— +r(x)ur =0, a <z < z1, us(a) = ¢la),u1(zr) = A

2
(3 - = X, ua() = 400).
We note that each of the above two subproblems has a unique solution for any
value of A. The coupling at the point x; for the above subproblems is well known
to be (i) the continuity of the function and (ii) the continuity of the derivative of
the function at that point. From (2) and (3), the boundary condition imposed at
x7 guarantees the continuity of ¢ at z7. Suppose u; = ui(x; A) and ug = ua(z; A)
denote the solutions of (2) and (3) respectively, then evaluating the solution ¢(xr)
requires a value of A such that it satisfies the following defect equation,

(4) D)) = 4 'u,l(mI,/\) —a—ug(zl,)\) =0.

If A = X* is a root of the defect equation D()) = 0, then the function

ui(z;A*) a<z<zIr
(5) P(z) =4 A t=z1

us(z; A*) zr<z<b
is a solution of the boundary value problem. Note that if z; = a or z; = b,
the above approach reduced to a variant of simple shooting method. In order
to approximate the root of D()) = 0, we rewrite the equation as A = G(A) =
A—aD()), a # 0, and consider the fixed point iteration scheme

(6) AEHD = A _ DA™Y, n=0,1,2,...,

where A\(® is arbitrary. Details of the convergence analysis, discretisation error,
and matrix representation of the defect equation are given in [8]. Here we only
mention two properties related to the iteration scheme (6). It was shown in [8]
that D'()\) > 0 and is bounded and that the scheme (6) converges to the unique
root of D(X) = 0 if « satisfies 0 < a < 2/Ty, where

Ty = ((a + 00)e" @~ + (py — oy )e e E7) [ Ag
+((m — o1)em®=20) + (py + or)eru(b==0) [ Ay

Aaj = et (z1—a) _ e_l‘j(ﬁ”_a)a]‘ = l’u,

Abj = e”’j(b_:”) - e—uj(b_:“)»j = l,u:

However, this result is not very useful in the sense that o is difficult to determine
when D’()A) is a dense matrix results from a vector D(}). Some preliminary
studies in this respect are given in [7]. Here we extend the idea in {7] and
establish in the following theorem an adaptive formula for o based on the scalar
e-algorithm [10].
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THEOREM 1. The scalar e-algorithm eg _‘_)1 = ngiﬂ) + (es (nt) _ (n))_l, s =

0,1,..., where e(_"l) =0, e(()") = A" | for the acceleration of a converging se-
quence {A\™}, can be imbedded into the iteration scheme (6) where « is replaced
by ay, and is given by

an—llD()‘(n_l))'
[DO®) — D]

Q= , n>0,

provided D'(X) > 0.

Proor. For the present case, we only need to construct e( ™) From definition,

we have E(n) (n+1) + (E("+1) (n)) -1 — j(=+1) _ ﬁé’%(_k;(%p(,\(n-kl))

and using the cond1t10n D'(X) > 0 the result follows.

We apply the above numerical scherme to the model convection diffusion equa-
tion %? ~42 @z = 0, with boundary conditions ¢(0) = 0 and ¢(1) = 1 and we
choose £; = 1— 1. Table 1 shows the number of iterations using an exact solver
for the subproblems. Table 2 shows the number of iterations for the case v=10
using a second order finite difference method for the subproblems. In the latter
case, we have chosen equal mesh size in both of the subdomains. In both cases, we
have used the same A(®) and iterate until |\( — A(*=1)| < 0.5 x 10~5|A() — \©).

v n AW $(z1) |p(zr) — A™)
10 2 0.36785 0.36785 0.37 x 107
20 2 036788 0.36788 0.45x 10~7
30 2 0.36788 0.36788 0.81 x 10~7
40 2 0.36788 0.36788 0.81 x 10~7
50 2 0.36788 0.36788 0.37 x 10—®

Table 1 : 1-D model problem using an exact subsolver.

B n 2™ g(zr) — A0
0.02 3 0.36662 0.12 x 10~2
0.01 3 0.36754 0.31 x 103
0.005 3 0.36777 0.76 x 10~
0.0025 3 0.36783 0.17 x 104

Table 2 : 1-D model problem using a 2nd order difference subsolver (y = 10).

3. Multisubdomain Case
We consider the following s+1 related Dirichlet boundary value subproblems,

duk
dz2

with 2o = a and .41 = b, u1(a) = ¢(a) and us1+1(D) = P(b). Let ug = ug(z; )
denotes the solution of (8) in z;_; < z < Ty, where A = [A; Ag ... AT isa

(7)

+c(z )* +r(@)ue =0, ur(Zr—1) = Ap—1, up(zs) = Ag,
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s-vector, then evaluating the flux ¢'(z), k = 1,2,..., s, requires a vector of A
such that the following vector defect equation is satisfied,

d 7]
(8) D(X) = [Dx(N)] = [Eiuk(mk; A) — %ukﬂ(mk;)\)] =0.
If A = A* is a root of D(A) = 0, then the function

=1 T = Tg-1
(9) #lx) = w(z; XA*) w1 <z <38y 6=1,2,...,8,
AL T = T

is a solution of the boundary value problem given in (1). We perform numerical
experiments to the previous model problem with interfaces chosen as 75 = ;—f—l—
First, we construct the Jacobian matrix J(A®) = D'(A\®) numerically and
assign @ = J ™1, in which case it is equivalent to a Newton iteration and requires
25 subproblem solves. Also each iteration requires s + 1 subproblem solves in
order to compute D(A™). Since we only need to construct J(A®) once, the
total number of subproblem solves is (s + 1)y + 2s, where n, is the number of
iterations. Numerical tests show that n; = 2 which agrees with the results for
2-subdomain case. Second, we choose o = (diagJ(A(®)))~! which is equivalent
to a Jacobi iteration applied to the system CA = b such that D(A) = CA—b= 0.
The total number of subproblem solves is (s + 1)nz + 2s where ns is the number
of iterations. This test is purely for the purpose of comparison with the adaptive
a approach. Third, we construct a sequence of scalar parameters {a,, } simply by
taking the norms of D(A*~1) and D(A™) — D(A~1), The amount of work is
thus (s + 1)n3 subproblem solves. Here we have taken ||.||z, however ||.||cc does
not vary the result very much. We present ne and ng in Table 3 for the previous
1-D model problem using an exact subproblem solver. In all cases, we start from
the same A(® and iterate until [|A™ — A»=D]|| < 0.5 x 1073|]AM) — XO)| .

s+1 4 8 16 32

vy=10 mng 14 45 149 511

ng 14 23 37 96

y=20 mng 8 22 68 236

ng 15 21 35 62

y=30 mng 6 15 44 147

ng 15 18 34 58

v=40 mng 6 12 34 107

ng 13 20 37 51

y=250 mng 4 12 27 8

ng 11 20 31 52

Table 3 : Multisubdomain iteration for the 1-D model problem.

The results shown in Table 3 suggests that ny becomes unfavourable compared
to ng as s + 1 increases. It also suggests that ng ~ 25 when s + 1 is large. We
also remark that the approach provides an efficient multiple shooting algorithm
for 2-point boundary value problems on parallel computers.
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4. A 2-D Non-Symmetric Problem

We consider the following 2-D convection diffusion equation

0
(10) Vi —1gl =0€R={(a,9): 0 <o,y <1},
with Dirichlet boundary condition ¢(0,y) = 0, ¢(1,4) = 1, and ¢(z,1) =
#(z,0) = (e? — 1)/(e” — 1). We perform tests with interfaces parallel to x-
axis, i.e. the convective flow is tangential to the interface. A second order finite
difference scheme is applied to (10) on a regular mesh (z;, y;), where z; = ih and
y; =jh, 4,5 =0,1,... ,N, and h = 1/N. A total number of s + 1 subdomains
are used and each subdomain is defined as
k-1 k

= D —— —_— k=1,2,... 1
(11) Q= {(z,9) s+1<y<$+1,0<m<1}, 22,0, ,8+1,
with interfaces I'y, k = 1,2,... , s, defined as

s+ b
Hence there is a total number of s(N — 1) discretised interfacial unknowns.
We formulate the vector defect equation of the interface problem and use the
adaptive o technique previously described to solve (10) taking N = 20, 40, 80,
and taking s + 1 up to N/2 or 1/2h. The numbers of iterations are shown in
Tables 4, 5, and 6 respectively.

s+1 2 4 10

vy=10 31 27 91

vy=20 25 25 54

vy=30 25 26 37

¥y=40 30 27 51

(12) D=0 N0 ={0<z<1l:y=

Table 4 : 2-D model problem, N = 20.

s+1 2 4 8 10 20
¥y=10 30 34 61 65 259

vy=20 28 30 43 55 139
v=30 26 32 37 44 73
vy=40 29 32 37 40 T2
vy=50 26 34 38 39 64

Table 5 : 2-D model problem, N = 40.

s+1 2_ 4 8 10 20 40
y=10 33 61 79 114 206 838

v=20 28 51 57 67 87 436
v=30 24 38 50 64 87 310
Y=40 28 39 50 49 74 219
Y=50 26 39 44 49 69 174

Table 6 : 2-D model problem, N = 80.




AN ITERATION SCHEME FOR NON-SYMMETRIC INTERFACE OPERATOR 285

From the above results, one can observe the limited increases in the number
of iterations as s+ 1 increases, except for the case v = 10, provided s+1 > 1/2h.
As s+1 = 1/2h the present adaptive a approach becomes unfavourable, however
the subproblem solver is extremely cheap and involves only a tridiagonal direct
solver of 1/h unknowns for each subproblem.

5. Conclusions

A non-overlapped domain decomposition formulation based on the concept
of shooting method is presented. The coupling of subdomain solutions is incor-
porated into a defect equation which involves unknowns along the subdomain
interface. A fixed point iteration technique is applied to solve the defect equa-
tion. We introduce an adaptive @ which can be considered as a simplified version
of e-algorithm in order to accelerate the convergence of the iteration scheme. We
remark that the present multisubdomain approach provides a fast efficient vari-
ant of multiple shooting methods for 2-point boundary value problems on parallel
computers.
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