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Parallel Iterative Solution of Symmetric Coupled
FE/BE-Equations via Domain Decomposition

U. LANGER

ABSTRACT. The use of the FEM and BEM in different subdomains of a
non-overlapping Domain Decomposition (DD) and their coupling over the
coupling boundaries (interfaces) brings about several advantages in many
practical applications. The resulting coupled FE-BE-DD equations can
be reformulated as a system of linear algebraic equations with a symmet-
ric, but indefinite system matrix. This paper provides a parallelization
and a preconditioning of Bramble/Pasciak’s CG (1988) applied to the sym-
metric, indefinite coupled FE-BE-DD equations. Both the parallelization
and the preconditioning are essentially based on the domain decomposition
approach. The parallelized algorithm is well suited for computations on
MIMD computers with local memory and message passing principle.

1. Introduction

The Domain Decomposition (DD) approach offers many possibilities to marry
the advantages of the Finite Element Method (FEM) to those of the Boundary
Element Method (BEM) in many practical applications. For instance, in the
magnetic field computation for electric motors, we can use the BEM in the air
subdomains including the exterior of the motor more successfully than the FEM
which is prefered in ferromagnetic materials where nonlinearities can occur in the
partial differential equation (pde), or in subdomains where the right-hand side
doesn’t vanish [10]. The same is true for many problems in solid mechanics [11]
and in other areas of mathematical physics. Various methods for coupling the
FEM and the BEM can be found in [18]. A very straightforward and promising
coupling technique was proposed by M. Costabel [3] and others. In the different
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subdomains of a non—overlapping domain decomposition, we use either the stan-
dard finite element (f.e.) Galerkin method or a mixed-type boundary element
(b.e.) Galerkin method which are weakly coupled over the coupling boundaries
(interfaces) I'c. The mixed b.e. Galerkin method makes use of the full Cauchy
data representation on the b.e. subdomain boundaries via the Calderén pro-
jector. So, one drawback of the method is the necessity of calculating weakly
singular, singular and hypersingular integrals. However, the progress that has
been made in the combined analytical and numerical integration of such inte-
grals recently removes this drawback more and more (see,e.g.,[11]). On the other
hand, one can benefit from this mixed variational formulation in constructing
highly efficient, parallel iterative solvers for the resulting f.e. /b.e. DD equations.
This topic has been considered much less extensive than the construction tech-
nigues, the numerical integration methods and the discretization error estimates
(see [12, 13, 16] for b.e. equations).

In this paper we make use of the advantages of the mixed variational f.e. /b.e.
discretization and propose a algorithm for solving the coupled f.e. /b.e. equations.
First of all, the coupled f.e./b.e. equations can be reformulated in the symmetric
and indefinite form

Kp I —Krxe O up Ia
(1.1) _KCA —KC ——KCI U = _iC
O | -Kic -K; ur -f;

The coefficients of the unknown vectors Yo, uy and u, approximate the unknown
potential function (displacements in elasticity) at the nodes on the coupling
boundary I'¢, the unknown potential function (displacements) at the nodes in
the f.e. subdomains and the normal derivatives (stresses) at the nodes on the
boundary of the b.e. subdomains. We provide a preconditioning and a par-
allelization of Bramble/Pasciak’s Conjugate Gradient (CG) method [1] applied
to the symmetric and indefinite system (1.1). Both the parallelization and the
preconditioning are essentially based on the DD approach. In order to derive the
preconditioner, we use the Additive Schwarz Method (ASM) [5, 8]. The com-
ponents of the preconditioner can be chosen such that the resulting algorithm
is, at least, almost asymptotically optimal with respect to the operation count
both in the 2D and 3D cases provided that an asymptotically optimal matrix—
by-vector multiplication technique [9] is applied in the 3D case. Using a special
data distribution, we parallelize the preconditioning equation and the remaining
algorithm in such a way that the same amount of communication is needed as
in the earlier introduced and well studied parallel PCG for solving symmetric
and positive definite f.e. equations [8]. The parallelized algorithm presented in
[14] is well suited for computations on MIMD computers with local memory
and message passing principle (e.g. transputers). The hypercube seems to be
the most suitable architecture for the implementation, at least, on a reasonable
number of processors [6].
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The remainder of the paper is organized as follows: In Section 2, we recall the
mixed DD coupled domain and boundary integral variational formulation (Sec-
tion 2.1) and the corresponding coupled f.e./b.e. Galerkin discretization (Section
2.2). The third Section is devoted to the preconditioning of Bramble/Pasciak’s
CG. The parallelization of this algorithm is discussed in [14], where the reader
can also find the first numerical results. Finally, we draw some conclusions (Sec-
tion 4).

2. The Coupled FE/BE-DD-Discretization

2.1. Mixed Variational Formulation. Let us consider the model Dirichlet
potential problem

(2.1) div(aVu)=f mQ and u=g onlp=T=0Q,

in a plane, bounded domain Q& C R? with a Lipschitz-continuous, piecewise
smooth boundary I' . Boundary value problems of the kind (2.1) typically arise,
for instance, in the magnetic field computation for electric motors [10]. In this
case, the coefficient function a(.) usually varies in orders of magnitude in dif-
ferent subdomains of the domain Q . So, we divide Q into p non-overlapping,
simply connected subdomains ; (i = 1,2,...,p) called also substructures or
superelements such that Q = Qp UQFp, with Qp = U;?:lﬁ,- and Qp = Uf=q 418
and assume that

(2.2) f=0inQp, f € Ly(QF), a € Loo(QF), with a > const > 0 in £,
’ a(zr) =a; =const >0inQ; fori =1,2,...,q, g € HY2(T).

Let us denote the coupling boundaries (interfaces) of O, {p and Op by

(2.3) I'c =TpcUTrc, Tc =TBe U fzic =TcUTp, I'pc =
) Tsc\I'p,Teec =Ui 1T, Tre =Trc\I'p, U're = Ui—gs1 T

respectively, where T'; = 8 Q; (i = 1,2,...,p). Further we assume that there
exist two positive constants r; and 7; such that

(2.4) 0<r; <diam(;) <7; and 0<¢ <Tifr; <C

for all i = 1,2,...,p, with fixed (i-independent) constants ¢; and T;. Denote
H = max {F;} and suppose, for simplicity, that Hp = max {F1...Tq} < L.
The last condition ensures the positive definiteness of the single layer potential
operator [12, 16].

Following M.Costabel [3], G.C.Hsiao and W.L.Wendland [12], W.L.Wendland
[18] and others, we can reformulate the b.v.p (2.1) as a mixed DD coupled
domain and boundary integral variational problem: Find (A, u) € Vg = AxUg:

(25) a()\, U; 77»'”) = (Fﬂpsv) v (TI» 'U) eVo=AxTUo
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where
a(Au;n,v) = ap(Auin,v) +ar(u,v),
. ,
agnusmv) = 3 a {(Diwi, vidr, + (mi, Vididr, + (i, vi)r,
i=1
—L (s, widr, + (M, Kawi)r, — (i, Kiwa)r, }s
, ;
(2.6) 4 ap(u,v) = Y [ a(@)Viu(z)Vu(z) dr,
i=g+1Q;
P
(Fap,v) = X [ f(@)v(z)ds,
i=q+1Q;
M, vi)p, = J Xiv; ds, and u; = ulr,,v; = v|r, etc.,
\ r;

with the boundary integral operators Vj, K, D; defined by the relations

Vidi(z) = JE(m,y)Ai(y) dsy
(2.7) K;vi(x) = I:f.é)yE(:z:,y)vi(y) dsy
Diui(z) = _azrfayE(zay)uz(y) dsy = _azKi'Ui(m)

and the fundamental solution E(z,y) = —(loglz — y|)/2x of the Laplacian. The
mapping properties of the boundary integral operators (2.7 ) on Sobolev spaces
are now well known [4]. The manifold U, and the spaces Ug and A are defined
by the corresponding energy and trace spaces [12, 14].

The existence and uniqueness of the solution of the variational problem (2.5)
can be easily shown [12]. ;

2.2. Coupled BE/FE-Discretization in the Nodal Basis. Let us divide
the last (p-q) subdomains @ (i=q+1,¢+2,...,p) into finite elements §, such
that this discretization process results in a conform triangulation of QF , and let
us continue the discretization process to T gc in an analogous (one-dimensional)
manner for linear elements (see, e.g.,[11] for higher-order elements).

To avoid the homogenization of the Dirichlet boundary condition, we suppose
that g=0 on I'p for simplicity. Define now the usual nodal b.e./f.e. basis

(28) ® = [(1017 cr e s PONATPNA+Ls -+ s PNA+Ng s PNA+No+15 0 -+ 7(PN]1

where N = No+Ng+Nip, No = Np1+-+-+Npgand Ny = Nrgs1+-- -+ Nrp-
Thus, the first Na basis functions are used to approximate A; on I'y (Va1 basis
functions), ..., Ag on I'y (N 4 basis functions); the next N¢ basis functions
are used to approximate u on I'¢; and, finally, the last N; basis functions are
defined in Qg11(N1,g+1 basis functions), ..., in Q,(Ny, basis functions) for
approximating u in the subdomains Qg41,...,$p. Here and in the following the
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indices ”A”, ”C” and ”I” mark quanties corresponding to the A’s on T ¢, to the
u|r.'s on the coupling boundary I'¢ and to the interior Q7 = Uf___q 11 Q; of the
f.e.-subdomains, respectively.

The f.e./b.e. subspace

(2.9) V=V, =Ay xUgn C Yy

is now defined by the finite dimensional spaces

(2.10) Api=span®p; (i=1,...,q9) and Upp =spandy

with Ap, = A1 p X -+ X Agp. The bases @y and @ ; are given by the relations

(211) q)U = [(pNA+17 c s s ONA+Nes PNA+No+Ly -+ (PN] and

(2.12) ®p; = [ +11---s ‘P2¢+NA,i] 1=1,2,...,q,

with ¥y =0and &; = Np g+ -+ Np ;-1 fori=2,3, ... ,q. Once the basis ® for
V is chosen, the Galerkin f.e./b.e. approximation to (2.5) results in the system
(2.13) Ku=f

of coupled linear f.e./b.e. equations. Because of the properties of the bilinear
form a(.,.), the system matrix K is positive definit (p.d.), but non-symmetric.
Note that asymptotic convergence estimates can be found in [12].

Taking into account the arrangement of the unknowns given in (2.8), we can
rewrite system (2.13) in the block form

Kn —Kne O Up Ia
(2.14) Kon Ko  Kor u | =1 fo
O Kic Ky Uy ,f_[

The system matrix K satisfies the identity
(2.15) (Ku,v) = a(A,u;7,v)
for all u,v € RY with u & (A, u) =Pu €V and v & (n,v) = P E V.
The latter f.e./b.e. isomorphisms u = (uf, yg,gf)T ~ (A, u) means
wy = up = @l 0k )T o A= Pauy = (@anaie- Pgliag) € A
and

N
uy = (W) o u=2yu, = S uly; € Ugn.
i=Na+1
The same is true for the correspondence v < (1,).
Now we are interested in highly parallelizable and efficient iterative methods
for solving the system (2.14) of the coupled fe./b.e. equations. A promising
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approach to the construction of such methods consists in the reformulation of
system (2.14) as the symmetric, but indefinite system

Ky Ky ) ( Uy ) f
2.16 ={ =1
(2.16) ( Ky —K» Uy I
by multiplying the last two block equations in (2.14) by (-1), where we use the
notations Ky = KA,_Ji1 = iA and

-K, Ke K -
K21 = K{Z = AC ,K2 = ¢ Ic ’i = -J:C .
0 Ker  Ki 2 -f,;

In the next section, we apply Bramble/Pasciak’s method of transforming system
(2.16) into a equivalent system the system matrix of which is positive definite
and self-adjoint with respect to a specially chosen inner product [1].

3. Parallelization and Preconditioning of Bramble/Pasciak’s CG via
Domain Decomposition

3.1. Bramble/Pasciak’s CG for Symmetric and Indefinite Systems.
Tet us suppose that there is a symmetric and positive definite matrix

C1 (= Cn = diag[Ch,]
satisfying the spectral equivalence inequalities

i=1,...,q

(1) 7,61 £ Ky 7,01

with positive spectral equivalence constants Y and %,. Without restriction of
generality, we assume that >l The transformed system

(3.2) Mu=g

with the system matrix

(33) M= CriK, Cr Kz
EnCrY (K1 —C1) Ko+ KaiC7 Ky

and the right-hand side
r 7l% -1 ~1
(3.4) 9=o"6%] .o, =Ci'fy 9,=EnCi'f, ~ 1§,

is obviously equivalent to system (2.16). The system matrix M is self-adjoint
and positive definite with respect to the new inner product [.,.] defined by

(3.5) [( % ) , ( L )] = (K1 = C)usy ) + (o)

Uy vy
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for all y = (uf, gg)T and v = (of, Qg)T € RY. Because of assumption 7, > 1
the operator K1 — (; is positive definite and inequalities
(36) o (Kiwy,u) < (K1~ Ch)ug, ) <@ (Kiwg, ) Vuy € RY
hold, with @, =1 — (1/11) and @3 = a = 1 — (1/¥;). Moreover, J.H.Bramble
and J.F.Pasciak proved the spectral equivalence inequalities (Theorem 1 in [1])
(3.7) AlRu,u) < [Mu,u] <X[Ru,u] VYueRY

with the spectral equivalence constants

-1
(3.8) A= 145+ + ) apa 3= iHYE
' 4= 27V T -a

and with the regularisator

(I 0 )
(3.9) k= ( QO K;+ KouK{'Kis

from which we can easily derive a preconditioner C for M provided that a pre-
conditioner Cy for K9 + Ko1Ky 1Ko is known. In the next subsection we use
the ASM in order to construct the preconditioner Cs.

3.2. The ASM-DD Block Preconditioner (3. Let us construct a sym-
metric and positive definite block preconditioner C'; for the matrix

(3.10) Ko+ KnK Ky = ( Ko +KIC;:Z<A1KAO I;'{CII )

by means of the Additive Schwarz Method (ASM). Beside the nodal basis
(3.11) By =By = (Dnys1r-+» @y aNer-- 1 8W)

we consider the approximate discrete harmonic basis [8]

(3.12) &y = 3,15

obtained by the basis transformation matrix

(3.13) Vo= ( —D;fKIC 2 ) = (Vz,c VZ,I) )

where Dj is an appropriately chosen non-singular matrix. We suppose that the
matrix Dy = diag (Dl,i)i=q +1,..p has the same block diagonal structure as K
and that systems with the system matrix Dy ; can be solved much faster than
systems with the original matrix K ; (see [8] for example). The symmetry and
the positive definitness of D are not required.

Now, the f.e./b.e’ subspace Ug can be represented in the form

(3.14) Uon = Uc + U1
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of the direct sum of the subspaces

(3.15) Uc = span @2172,0 and U; = span ‘1)2‘72,1.
Introduce on Ugp, for all u, v € Upp, the auxiliary bilinear form

q
(3.16)  @(u,v) = ap(u,v) + ¥ ai(Dus, vi)r, + (Kea Ky Kacuc, vc)

i=1

with the f.e. part ag(.,.) defined in (2.6) and with the correspondence u|r; <
%e,Vre < vo. Now we can prove a strengthened Cauchy inequality for the
decomposition (3.14) with respect to the symmetric and positiv bilinear form
a(.,.) defined on Ugy x Ugp.

LEMMA 3.1. For allu € Ug and v € Uy, the strengthened Cauchy inequality

(3.17) Ja(u, )] < 4/ - ’: — (a(w w))2 (5(v, v)) /2

holds, where p = p(§‘011°10) is the spectral radius of ,;’Elf;’c . The matriz

o o] [e] [+]

Sc=Kc — Kcr KI_1 K¢ denotes the f.e. Schur complement and the operator
o

Te is defined by the relation

(3.18) To=Kcr (Kr'~D;T) Ki (K;* - Dr') Krc -
* The constant in (3.17) is sharp, i.e. ¥ =cos < (EJCU@I) =(p/Q+p)*° <L

LEMMA 3.2. If the symmetric and positive definite block preconditioners Co

and C1 = diag (Cfﬂ)i:l—,& satisfy the spectral equivalence inequalities

(3.19) 1500 <S¢ +To + Bo + KoaKy ' Kae <7cCc  and

(3.20) 7,Cr £ K1 <70

with positive spectral equivalence constants Yoo Ve Yy V15 then the ASM precon-
ditioner -

Ic KeiD7T
(321) G = ¢ KeiDy Cec O Ic o)
0 Iy 0 Cr Di'Kic I¢

is symmelric, positive definite and satisfies the spectral equivalence inequalities
(3.22) ¥,02 < Ko + KnKi 'Ky <7,C,

with the spectral equivalence constants

(3.23) v, =min {10,1_,} (1=19) end ¥, =max{Fc, 7} (1 +7)
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The proofs of Lemmas 3.1 and 3.2 are given in [14]. Combining Bram-
ble/Pasciak’s results (see Section 3.1) and the results of this section, we arrive
at the following spectral equivalence theorem.

THEOREM 3.1. Let us suppose that the conditions imposed above on Cp =
C1,Cc,Cr and Dy, especially, the spectral equivalence inequalities (3.1) and
(3.19) are satisfied. Then the f.e./b.e. DD preconditioner

(3.24) C= diag(Il, 02)

is self-adjoint and positive definite with respect to the inner product [.,.] and
satisfies the spectral equivalence ingualities

(3.25) v[Cu,u} < [Mu,u] <7[Cu,u] YveRY,

with the spectral equivalence constants

(3.26) 7 = Amin {1,12} and 7= Amax{l,%,},
where A, A and Y+ 72 are defined by (3.8 ) and (3.23), respectively.

In [14], the data distribution to the processors of a MIMD—computer with dis-
tributed memory and the parallelization of the ASM-DD-preconditioned Bram-
ble/Pasciak CG is discussed in detail.

4. Conclusions

It follows from the results of Theorem 3.1 and from the papers mentioned
above that there are such basis transformations D; and such precondition-
ers Ca,Co and C; that the ASM-DD-preconditioned Bramble/Pasciak CG is
asymptotically optimal or, at least, almost optimal with respect to the operation
count and well suited for computation on MIMD computers with local memory
and message passing principle [7]. The components Dy, Ca,Cc, and Cy of the
preconditioner can be adapted to the case of strongly varying coefficients and to
other specialities of the boundary value problem under consideration (see.e.g.,
(2, 6, 8, 13, 15, 16]). In the 3D case, these components are also avialable
[13, 16, 17].

Our algorithm works in the case of coupled f.e./b.e. equations (1<g<p)
as well as for "pure” b.e. equations (q=p) and for "pure” fe. equations (q=0).
In the latter case, the algorithm coincides with the parallelized PCG for solving
symmetric and positive definite f.e. equations presented earlier in [6, 8. In
this connection, we can expect that our algorithm processes similar excellent
properties as the well studied and well tested PCG [6, 7, 8].
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