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Interface conditions for heterogeneous domain
decomposition: Coupling of different hyperbolic
systems

IVAR LIE

ABSTRACT. We consider a domain decomposition method for coupling of
different sets of hyperbolic systems of partial differential equations. The
domain consists of several types of subdomains, each type is characterized
by a hyperbolic system. We show how we can construct interface conditions
between subdomains, and show that for a specific problem (ocean/bottom
acoustics problem) that the coupled system is well-posed, and that the
Chebyshev spectral collocation approximation to this problem is time-
stable.

1. Introduction

We consider the solution of a physical problem in a domain containing several
types of media, and assume that the physics in each medium is governed by a
set of hyperbolic partial differential equations (PDEs). For the sake of simplicity
consider two media and let one medium be a subdomain. This situation is
illustrated in figure 1.

The PDE systems are formulated as first order systems and we allow the
PDESs to be quasi-linear.

d
(1.1) ui+ > Ajw)ul = i Qx(0,T), i=1,2
j=1
where (); is an open bounded domain in R™, m = 1,2 or 3, u and f are vector
functions: u’, f*: (Q; x (0,T7)) — R™, n > 1. A;(u’) are n x n matrices possibly
depending on u!. The system (1.1) is supplemented by initial conditions of the
form u'(x,0) = ¢*(z), z € €;, by boundary conditions on T'; x (0,T) and by
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interface conditions on I'y % (0,7). The boundary conditions and the interface
conditions will be discussed below.

Iy T2

FIGURE 1. The two different media case

Since we discuss hyperbolic systems, the boundary conditions will have to be
specified using the characteristic variables of these PDE systems, see e.g. [5]
2], [1], [10].

Physical examples with different media in the domain occurs frequently, e.g.
in vibration problems. A typical example is the coupling between an acoustic
field and an elastic body. Coupled vibration problems are studied in detail in
e.g. [4] and [7], but without reference to domain decomposition and interface
conditions.

Our goal is to construct efficient numerical methods for such coupling prob-
lems, and in [10] we have presented a model for ocean/bottom acoustics using
the domain decomposition method. The purpose of this paper is to provide a
better basis for the model presented in [10]. The rest of the paper is organized
as follows: In section 2 we present the interface conditions in a general form
together with a specific example. The well-posedness of the coupled problem
and the time-stability of the discretized version of the example in section 2 is
presented in section 3. The space discretization is by Chebyshev spectral collo-
cation. For numerical results from the ocean/bottom acoustic model we refer to
(1], [10] and [9].

b

2. Boundary and interface conditions

The interface conditions between the subdomains (of the same type or not)
must be based on the physical boundary conditions of the problem. Examples
of such physical boundary conditions in the case of continuum mechanics are:
(The summation convention is understood)

a) Continuous normal velocity: u} n; = u?n;
b) Continuity in momentum: a,,;lj nj = afj n; = yn;.

¢) Continuous heat flux: v'n; (VI'); = v2n; (VT?2),.
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where {n;} are the components of the normal vector at a point on the interface,
afj the components of the stress tensor in 0, v a quantity representing surface
tension, v* the thermal conductivity in € and T* the temperature in .

The construction of the interface conditions is done as follows: Consider a
point p of the interface and denote by {1} } and {1?} the locally one-dimensional
(normal to the interface) characteristic variables in the two media. Take corre-
sponding characteristic variables, i.e. those containing corresponding variables in
the physical boundary conditions, say 'z/z,ﬁ and 17 and consider a pair of ”ghost”
characteristics 1/3,1c and 1/312 which have the following meaning: If we consider the
situation seen from £2; then some incoming characteristic, which is unknown
since its impact comes from g, should be combined with the outgoing char-
acteristic in order to get the corrected values of the physical variables at the
interface point. The situation is illustrated in figure 2. The same reasoning
applies to .

9]
Q,

FIGURE 2. Real and "ghost” characteristics

Now perform the correction of the physical variables from 4} and ¥} in @
and from %7 and 9 in Q, and use the physical boundary conditions to find %},
¢ and the corrected values at the interface.

A differential type of interface conditions for hyperbolic systems is constructed
in [3], and this method and the correction method are closely related. The
main advantage of method in [3] is that the problem including boundary and/or
interface conditions can be formulated as a single ODE set. In addition the
differential approach allow for implicit time integrators, for a discussion of the
problems in using implicit integrators, see [5].

Let us consider an example of the correction procedure. In [10] we studied
the coupling of the equations for adiabatic wave motion in water:

(2.1) pi+V-(p'u') =0
1
(2.2) w + (- V)ul + Vp=—g

(2.3) e+ (W -V)p+plC?V -ul =0
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and the equations of linear elasticity in sea bottom:
(2.4) pPu? Dive
(2.5) o = MV-u?+p(Ve? +(Vu?)T)

where p* are the densities, u® the velocity vectors, C' the sound speed, p the
pressure, o the stress tensor and A, p the Lamé coeflicients.

For simplicity ‘we consider a horizontal interface (€; above Q). In Q; the
"fast” outgoing characteristic is ¢} = p — p*Cwv! and the corresponding ” ghost”
characteristic is 1/;%= p-+p*Cot. The characteristic in Q2 corresponding to Pl is
1?2 = g9z — p?cpv® with its accompanying ”ghost” characteristic. The correction
procedure for the vertical velocity in the two media and the physical boundary
condition gives the relation:

~ 1 o
(26) g =91 = g O -

Similarly, the continuity of the vertical stress gives the relation:
1, - 1, -
(2.7 S+ 9] = S (@7 + o)

Hence we can find 1/;% and '1,/3% and we can compute the corrected values of p,
v!, o2 and v? at the interface. For more details, see [10]. This procedure is
also used if the interface has an arbitrary form. The details are in [9], but the
procedure is briefly as follows: If the interface at a point p forms an angle 6(p)
with the horizontal, we rotate the coordinate system this angle so the horizontal
becomes tangent to the interface at p. The components of »!, 42 and ¢ in
this coordinate system is then computed and the correction procedure described
above is applied to these components. Finally, the inverse coordinate transform
is performed, and the corrected values are computed in the original coordinate
system.

Remark 2.1. Note that the interface procedure can be put in the framework
of the bicharacteristics method of Kopriva [8]. He uses this method for homo-
geneous domain decomposition. For details on both homogeneous and heteroge-
neous domain decomposition for the two PDE sets (2.1)- (2.3) and (2.4)-(2.5),
see [11].

Remark 2.2. For rectangular domains the corners are treated by rotating the
coordinate system so that one axis bisects the angle of the corner. The correction
procedure is then applied based on the components of the physical variables along
this axis.

We have developed a model for acoustic propagation in water and bottom by
using Chebyshev collocation on the equations (2.1)-(2.3) and (2.4)-(2.5), open
boundary conditions (see [1]) and interface conditions as described above. The
numerical experiments with this model shows that the interface procedure gives
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a time-stable domain decomposition method. Some results from the model are
reported in [9] and [1].

3. Stability of the coupled problem

We would like to show that the PDE systems (2.1)-(2.3) and (2.4)-(2.5) with
the prescribed physical boundary conditions forms a well-posed problem. It is
easier to work with the linearized equations (and in acoustics problems they
are a very good approximation), so assume that we linearize locally (2.1)-(2.3)
{po,uo,po}. We also introduce the "entropy” variable: p = p — p/C%, and the
equations become: .

1
(3.1) up + (uo - V)u' + p—VP =-g
(4
(3.2) pe+ (u' - V)p+C3poV -ul =0
(3.3) B+ uo- V=0

We will also use another form of the equations of linear elasticity by introducing
the displacement vector s:

(34) s = u?
(3.5) p’u? = Diva(s)— pg

The two PDE sets combined can be written i
(3.6) U+ AU =F

where U = [u', p, ., s,u*]T. We can use semigroup theory, see e.g. [7, ch. IV],
to show that the operator A is dissipative in a Hilbert space setting, by defining
an appropriate configuration space including the physical boundary conditions
and a corresponding inner product. As configuration space we use

H=IL2

Po(Ql) x L

2_1517(91) X Lz(ﬂl) X Hl(ﬂz) X L2(Qg)

equipped with the scalar product
. 1 A .
0% = [ wisdet 2 [ ppdrs [ phae
o poCy Ja, &
+/ 0i;(8) €5(s) dx + p2/ u2a?dr
Qa €

where ¢€;; is the strain tensor of the elastic medium.
Now computing (AU, U)s we get:

2 o1
O M U; d.z?—!—/aQ pu; dr
1

(3.7) (AU.T )y = /

2
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Because of the physical boundary conditions on I'y this reduces to

(3.8) (AU,U)’H:/ az-jnjufd:c+/ pul dz
r

2 Iy

so if there is no inflow form the boundaries (the normal vectors point outwards)
or the boundaries are sufficiently far out so that u} = 0 and u? = 0, we then
have (AU, U)z > 0. Two other conditions will also have to be checked:

e Range(A)="H

s ( = 0 belongs to the resolvent set of A.
These conditions are easily found to be satisfied in this case. Hence we have the
result:

THEOREM 3.1. The operator A as defined in (3.6) is the generator of a con-
tractive semigroup in H.

In order to show the time-stability of the interface procedure, it is convenient
to work with the PDE sets in characteristic form. (We now return to use (2.4)
and (2.5) again). If we consider a horizontal interface the locally one-dimensional
version of the two sets are:

(3.9) Wi+ ANW, =G  i=1,2

where Wt = {p+poCv', u', p—p/C? p—poCu'}, W? = {(A+2p)011—Aa22, 020 F
pPepV? 12 F pPesu?}, Al = diag(C,0,0,-C), A2 = diag(0,+cp,+cg). We
discretize in space by Chebyshev spectral collocation, and apply the interface
procedure as described briefly above (for details see [10]): Outgoing variables
are unchanged, incoming variables are determined by a linear combination of
the corresponding outgoing variable (reflection) and the corresponding variable
in the other domain (transmission). We want to indicate how we can show that
the discretized version of (||W?|| + ||W?|)) in an appropriate norm is bounded
in time. The discretized variables are denoted by W%. The original problem
is reduced to a (locally) one-dimensional problem, and this is reasonable since
our interface conditions are locally one-dimensional. Since we consider linear or
linearized equations, we can apply the theory in [6]. We will use the terminology
from [6] in the following.

Consider first §)2 where we have linear PDEs and the following boundary
conditions:

(3.10) Wil(-18) = ¢'@)
(3.11) wE (LY = RW2(1,1)+¢" (1)

where superscripts I and I7 denotes parts of a vector corresponding to negative
and positive eigenvalues in (3.9). Then from [6] we have the following stability
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estimate:

(3.12) (1= m)IW?(y, 8)ll < CLN**(1g" ()] + 13" (5)])

for Rs =1 > ng > 0. Here Wy (y,s) = F(e~™Wy(y,t)) is the Fourier-Laplace
transform of Wy and s = 174 i£. The w-norm is defined as:

i = [ @i+ [ Pl (@)de

for some positive weight functions w! and w!!, for details see [6].
Consider then 2 and the locally linearized equations there. The same pro-
cedure can be applied here, and we have the following boundary conditions:

(3.13) whi(-1,8) = LWYI(-1,t)+hi)
(3.14) whi(1,1) = RWH(1,8)+ At(t)

and we have a similar estimate:
(3.15) (n — ) IWa (g, )| < CaNZ2 ([ (s)] + 1R (5)))

We can safely assume that B; < 1 and L < 1 because of the transmission
of energy into neighbouring domains. The coupling between the domains is
materialized by g??(t) and h!(t). We will assume that the following holds:

Wal(—L < CilWhlle  IWE (1,8 < Co| Wil

and the same at (1,t). We also assume that the same type of relations are valid
for W% at both boundary points.

By simple algebraic manipulations of the estimates (3.12) and (3.15) we can
now deduce that (7 —70)(|WOllw + [W2()|l.) is bounded. Hence we have the
following result:

LEMMA 3.1. The Chebyshev spectral collocation discretization of the ocean/bot-
tom acoustics problem described by the PDE systems (2.1)-(2.3) and (2.4)-(2.5)
with interface conditions as described in section 2 is time-stable.

4, Conclusion

We have presented a procedure of correction type for construction of inter-
face conditions between domains with different governing equations of hyperbolic
type. This procedure has been used with success in a model for ocean/bottom
acoustics as well as a model for the study of waves in the atmosphere. In the case
of the ocean/bottom acoustic model we have shown that the interface conditions
based on the physical boundary conditions between the media. is a well-posed
problem. The locally one-dimensional interface procedure is shown to form a
stable problem when we discretize by Chebyshev spectral collocation. The in-
terface procedure can also be used in the homogeneous domain decomposition
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case, e.g. in problems with variable coefficients. A good example of this is the
simulation of seismic waves in a layered medium.
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