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Hybrid Domain Decomposition
with Unstructured Subdomains*

JAN MANDEL

Abstract. We develop several new domain decomposition methods for solving large scale
systems of symmetric, positive definite algebraic equations arising from discretizations of partial
differential equations by conforming finite elements. First, the hybrid Schwarz alternating
method is developed and analyzed. This method treats the coarse space in a multiplicative
and the local spaces in an additive fashion, resulting in faster convergence at little extra cost.
Then four methods based on reduction to interfaces and space splitting are presented, two using
a coarse space cousisting of linear functions and two with coarse space of piecewise constant
functions on subdomain interfaces. Finally, we study an overlapping Schwarz method with
a discrete harmonic coarse space, piecewise constant on interfaces. The condition numbers of
all methods are proved to grow at most as log?(H/A) and to be bounded independently of the
number of subdomains when the subdomains form a shape regular coarse triangulation both in
2D and 3D. The methods with piecewise constant coarse space can be implemented as “black
box” solvers without any reference to geometry and are suitable for subdomains of arbitrary
shape.

1. Introduction. This paper is concerned with the analysis of a class
of method of “interface decomposition” type and one method of overlapping
Schwarz type. The interface decomposition methods studied here are essentially
of the form proposed by Dryja and Widlund [8, Eq. (26)] with the addition of
a coarse space. A formally closely related method was also used by the present
author for the p-version finite element method [13]. The overlapping method is
analogous to Dryja and Widlund [8], with the coarse space due to Cowsar [5]. A
related method was recently studied by Sarkis [18]. The analysis tools used here
are based on the results of Dryja [6] and Bramble, Pasciak, and Schatz [2, 3]
as reformulated by Mandel and Brezina [15], where the same tools were used
for the analysis of a different domain decomposition algorithm. See Dryja and
Widlund [7] for other related domain decomposition methods and theoretical
bounds.

The interface methods presented in this paper are based on computing with
the global Schur complement on subdomain interfaces for the sake of robustness
and increasing the locality of computations. The most expensive part of the
calculation is computing the action of the inverse of a subdomain submatrix
of the Schur complement on interfaces in each iteration. Since the submatrix
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contains contributions from neighboring subdomains, this computation cannot
be reduced to subdomain solves, but rather requires the solution of a subproblem
that is associated with all neighboring subdomains or an expensive explicit
calculation of the Schur complement matrix. Balancing Domain Decomposition,
introduced by the present author [12], only relies on subdomain solves to achieve
the same asymptotic bounds on the condition mumber, but pays the price in less
flexibility. The method of Farhat and Roux [9] is based on a Lagrange multiplier
approach and also only requires subdomain solves, but is not asymptotically
optimal.

Because of the page limit, some proofs are only sketched. Computational
aspects and numerical results will be presented elsewhere.

Sincere thanks are due to Olof Widlund and Lawrence Cowsar for many
discussions and reading early versions of the paper, and to Olof Widlund for
making drafts of his papers available to the author.

2. Abstract Hybrid Schwarz Method. First recall the formulation of
abstract Schwarz methods, following [1]. For another exposition, see [8].
Let V be a real finite dimensional linear space with the inner product (-, -), 4

symmetric, positive definite linear operator on V, and V;, i = 0,.. ., m, subspaces
of V such that

V=Vot 4V

Denote a(u,v) = (Au,v). The bilinear form a(-,-) is called the energy inner
product and ||ulla = (a(u, u))'/? is the energy norm.
We solve the problem Au = f, or, in the variational form,

(2.1) vu€V: a(u,v)=(rv), WweYV,

by the preconditioned conjugate gradients method. In each’ iteration, this
method requires approximate solution @ of the problem Au = r in such manner
that @ = Cr, where C is a symmetric linear operator.

In the Additive Schwarz Method, this is accomplished by computing

(22) "fz_e V;m a(u,-,w) = (Ta Ui)) Vo, €V;, i= 0,...,m,

=0 Ui~

Clearly, 4 = }77"  P;u, where Au = r and P; is energy orthogonal projection
onto V;,4=0,...,m, and C is symmetric.

The Multiplicative Schwarz Method used as a preconditioner starts from
u = 0 and proceeds by replacements of the form u «— u — u;, where

u €Vi: o a(u,v) = (r,v) —a(u,v;), VeV,

?' =0,...,m. One can perform the replacement steps once in forward and once
in backward order to get a symmetric operator C.

“In our application, the space Vj is the coarse space that serves the purpose
to “coordinate” the spaces V;, i = 1, .--;m. In the following hybrid variant,

the space V; is treated in a multiplicative fashion, while all other spaces in an
additive fashion.
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ALGORITHM 1 (HYBRID SCHWARZ METHOD). For given r € V, compute i
as follows:

(2.3) U € Vo:  allg,v) = (r,u), Vv €Vp
(24) weVi: a(u,v) = v;) — o, v;), Vv €V;, i=1,...,m,

(2.5) U= Zui,

i=1
(26) weVo: a(@~—upv)= {r,ve), Vug € Vg,
(27) % =1U— ug. '

REMARK 1. Algorithm 1 is just one step of a two-level variational multigrid
method [17] for the problem Au = r, started with the initial approximation
u = 0. Steps (2.4) and (2.5) play the role of smoothing, while steps (2.3) and (2.6)
are coarse grid corrections.

REMARK 2. In practice, step (2.3) can be omitted if the initial
approximation in the preconditioned conjugate gradients satisfies a{u,vp) =
(fswo), Vwg € V. This can be achieved by applying the correction (2.6), (2.7)
to the initial approximation before the start of iterations, with @ the given initial
approximation and @ the corrected approximation used to start the iterations.
Then the residual r in every step satisfies (r,vp) = 0,Vvp € Vg, and so one has
always g = 0 in (2.3).

REMARK 3. In the case of two subspaces, i.e., m = 1, the hybrid Schwarz
method reduces to the multiplicative method used as a preconditioner.

3. Abstract Spectral Bounds. It is well known that the number of
iterations of preconditioned conjugate gradients for a given reduction factor
of the error in energy norm grows at most as /k, where kK = k(CA) =
Amax(CA)/Amin(CA) is the condition number and Amiy and Apay are the least
and the largest eigenvalue, respectively, cf., [10]. The maximal eigenvalue of
the additive method is easy to estimate as the maximum number of intersecting

subspaces,

m
(3.1) e (7)< me 17,V 1% # (0)
=
cf. also 7], and Amin is bounded from the following lemma for the additive

method.
Lemma 3.1 (P.L. LioNs [11]). If there is a constant Cy such that

m
32) WweVIneV,i=0,..m: 3 lul}<Collvl?,
=0

then /\min ( Z?;O P,) Z 1/00
Proof. For a proof of the lemma in this form, see [1, Theorem 3.2] or |21,

Lemma 4]. 0O
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The following lemma shows that the condition number for the hybrid method
is smaller than for the additive method.
LEMMA 3.2. Algorithm 1 returns @ = Cr, where

(3) CA=(I-P) Y BT~ Po)+ P,

i=1

is symmetric, positive definite, and

5 @) 2 dmia( 3P, hnss(C4) < s (1)

=0 i=1

In particular, K(CA) < k(X iwo P;) with strict inequality if Vo N S Vi # {0}
Proof. Let u = A~r. Then from (2.3) to (2.7), we obtain in turn

49 = Pyu :
'"'i‘ = Pi(u—ﬁ0)=Pi(I—Po)u, i=1,...,m

i = Y P(I—-Pou
=1
v = —Po(u—u)

@ = @+ Po(u—1)= (- Py)i+ Pyu,

which gives (3.3). To prove (3.4), note that Py(I — Pp) = 0, so the summation
in (3.3) can be taken from i = 0; then (3.4) follows by a simple Rayleigh quotient

argument in the energy inner product using the fact that the projection Py is
energy orthogonal. [I

4. Domain Decomposition on Interfaces. Assume the domain  C R¢,
d = 2,3, is decomposed into non-overlapping subdomains €, i = 1,...,m with
characteristic size H, and assume that the subdomains ); are shapé and size
regular. Similarly, assume that each €; is decomposed into finite elements of
characteristic size h, and the usual shape regularity and inverse assumptions are
satisfied. Let W be the space of linear, conforming, finite element functions on
those elements, and W C H(f2). Let b be a bilinear form on HE(S) given by

d
(4.1) a(u,v) = f > bi;Budiv,
ig=1
the coefficient matrix {b;;(z)} being uniformly bounded and uniformly positive
definite in Q.

Denote the union of all interfaces of €; as T = UR,09; \ 8Q. Let V be
the space of all discrete harmonic functions V = T(W) C W, where T is the
operator defined by trace on I' and the discrete harmonic extension,

T:weW—veW, wlr =v)p
(4.2) '
a(v,w;) =0, VYw; €W, suppw; C;, Vi=1,...,m.
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Note that functions in V are uniquely defined by their values on I'.
Inspired by [6], define the scaled Sobolev norms

“U“1 KoM |U‘1 ot ‘7“““0 Ko 7P ”“||1/2 oQ; = |“|1/2 99 Huu"o 2Q;

lul} o, = /m [Vul?, [ul3/2,00, = /an. /an, IU(tli:Zfds)lzdtds
o = [ vl [0l o = 3 Il 3,00,
“U“in = lulg,n + Iluﬂg,g, ““lﬁ/z,p = lluﬁ/z,r + “U"%,r,

where, as usual, || - [lo is the L? norm. Note that then all components of ||u|; o

and {jully /2,69 scale in the same way under dilation, and, consequently, the
constants in the trace and extension theorems are independent of H, cf., [15].
We wish to solve a variational problem on the finite element space W,

(4.3) ueW: a(zw)=<gw> VYweW,

which is equivalent to a system of linear equations Bz = g. Eliminating the
degrees of freedom in the interior of the subdomains ;, we get the reduced
system (2.1) set in the space V', with the bilinear form (4.1) restricted to V. The
matrix of the reduced system is the Schur complement of the interior degrees of
freedom.

The first principal observation is that our assumptions imply the
equivalences of seminorms,

(4.4) M%,Qi = luﬁ/z,am, l“ﬁ,n ~ |uﬁ/2,r ~ afu,u), ueV,

with the equivalence constants independent of H and h, cf., [3, 20]. For a detailed
proof, see [15].

The second observation is that the tools from [3, 6] imply that a function on
I" can be “torn into pieces” with little penalty in the increase of energy; cf., also
the proof of Theorem 4 in [7]. It is convenient to describe such tearing in terms
of globs, defined as follows.

DEFINITION 4.1. Any vertex, edge, and, in the 3D case, face, of the
interfaces between subdomains {Q;} will be called a glob. A glob is understood
to be relatively open; for example, an edge does not contain its endpoints. We
will also identify a glob with the set of degrees of freedom associated with it.

DEFINITION 4.2. For glob G, define the selection operator Eqg : V — V as
follows: for u € V, Egu is the unique function v € V that has the same values
as u on the degrees of freedom in G, and oll other degrees of freedom of v are
zero.

Note that the union of all globs is the set of all degrees of freedom on T,
and the mappings Eg are projections that form a decomposition of unity on V,
YaFe=1

The following technical bound is the principal tool of our analysis. It is
essentially a re-interpretation of the results of [2, 3, 6], with few extra ingredients
in the 2D case. See [15] for a detailed proof.
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LemMMA 4.3 (GLoB THEOREM). For any glob G and for allu €V,

2
IEgull?/or < C(1+1og ()" (luli/or + Fluli,r)s
where the constant does not depend on H and h, both in 2D and 3D.

4.1. Methods with Linear Coarse Space. The first method is a special
case of the “vertex space” method of Smith [19], analyzed already in [7].

THEOREM 4.4. Let Vy be the space of piecewise linear functions on the
interfaces of the triangulation defined by the subdomains {Q;}, and the spaces
V; associated with globs, V; = Range Rg,, where G1,...,Gr, are all globs. Then
k < C(1 +log(H/h))2.

Proof. Tt is well known that there exists a linear mapping ITy : H(Q2) — Wy
such that for all v € H(Q),

(4.5) IMovlig < Clivlilg,  llv—Thovli o < CH?|[olI} 0,

cf., [4]. For u € V, define uy = Ilyu € V and u; = Eg,(u — up). From (4.5),
lluolli/2,r < Cllullij2,r- To estimate u;, i =1,...,m,.

luill} o0 = [1Ba:(u~uo)ll? 5 r
(4.6) < C(l+1og (%))2 Yicica; lu— “0”3/2,391
< C(1+log(E)) 2jcica, lu— ”Oﬁ,nj + grlu— “Olg,n,--

Using (4.5) and the equivalence of norms (4.4), we have Cy < C(1 + log(H/h))?
in Lemma 3.1, giving Amin > 1/(C(1 + log(H/R))?). From (3.1), it is easy to see
that Apax < C. 0O

Next we consider a method where the subspaces V; are associated with
subdomains instead of globs. We expect such a method to be more robust
because merging the glob subspaces has proved to be successful means to treat ill-
conditioning caused by high aspect ratios of subdomains in related investigations
for the p-version finite element method [14, 16].

Define the operators Il; : V — V by Il;v = v; € V, v = v; on the nodes of
0%; and v = 0 on all other nodes. Since

(4.7) ILiv = Z Egu,
GCoQ;

Lemma 4.3 immediately implies the following bound.
LEMMA 4.5. For anyv € V, |} , . < C(1 + log(H/h))? (v} /2,00,
The condition number estimate follows. o
THEOREM 4.6. Let Vg be the space of piecewise linear functions on the
interfaces of the iriangulation defined by the subdomains {Q;}, and the spaces V;
associated with subdomains Q;, V; = Range P;. Then x < C(1 + log(H/h))?.
Proof. The proof is same as that of Theorem 4.4 except that u; = II;(u — uo)
and Lemma 4.5 is used to obtain an estimate analogous to (4.6). 0
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5. Methods with Piecewise Constant Coarse Space. For our second
family of methods, define the operator Ip : V — V as follows. For v € V, define
c; as the average of v on 0, and let Jpv at a node equal to the average of the
numbers ¢; for all subdomains ; that share that node. That is,

(5.1) ' Iou=z—1- Z EgQju,

T,
G % j.ccon,

where @ : u — @ J. o, U and ng is the number of subdomains (2; such that
G C 09;.

First we need to show that the operator Iy does not increase energy too
much.

LEMMA 5.1. ForallueV

(5.2) Toul? o p < C(1+10g (£)) ul? 3,55

Proof. Let G C 09; be a glob. Define Iy = Uj.s0,na0,20 -
From Lemma 4.3 and from (5.1), it holds for all u € V that
Houl}/z 50, < C(1+ log(H/h))?|ul3 /5r, since the values of Iou on 0% depend
only on the values of u on ;. Then (5.2) follows by summation. 0

The following theorem bounds the condition number of the method with the
space Vj determined by one number per subdomain and the spaces V; associated
with globs.

THEOREM 5.2. Let Vo = Rangely and V; = Range Eg,, where Gi,...,Gm
are all globs. Then k < C(1 + log(H/h))?.

Proof. Again, we verify the existence of a decomposition needed for
Lemma 3.1. Let ug = lou and u; = Eg,(u — ), ¢ = 1,...,m. The needed
bound on ug is given by (5.2). To estimate u;, note that from (5.1),

(5.3) Eg(u— Iyu) = —1— Z Eg(u— Qiu).
"G ;.acen;

Additionally, from Lemma 4.3 we have for any u € V,
2 2
|Ba(u— Qiu)ﬁ/z,ag,. <C(1+1log (%)) (lu - Qi“ﬁ/z,ani + flu— Qi“'O,BQf) )

where IQ,-ulf/z s, = 0 since Q;u is constant on 8%y, and Ju — Qiul3 5o, <
CH|u|? /2,00,DY Mapping to a reference domain size H = 1 and scaling to
subdomain $); size H. Noting that for any v € V and G C 9% N 09y, one
has [Egv|}); 5o, < C|Egvl3 3 50, it follows that

2
(5.4) |Ba(u— Ipw)[2/p.r < C(1+10g (7)) Tuli/zr:

which concludes the proof in view of (5.3). O . .
In the next method, the subspaces are again associated with subdomains

rather than globs.
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THEOREM 5.3. Let Vy = Range Iy and V; be associated with subdomains €};,
Vi =Rangell;, i=1,...,m, ¢f. (4.7). Then & < C(1 +log(H/h))2.

Proof. The proof is same as the proof of Theorem 5.2 except that u; =
IT;(u — ug) and (4.7) is used along with (5.4) to bound Jusi |3 /2,0 O

The last method, due to Cowsar [5], is set in the original space W of functions
on ), but it uses as the coarse space the same space as above, consisting of
discrete harmonic functions determined by their piecewise constant values on
interfaces.

THEOREM 5.4. Let ; C ) so that dist($2;,00) > CH and S are shape
regular and Q; N Q consist of unions of elements. Define W; = W N HE (%),
it = 1,...,n, and Wy = Rangely. Then the Schwarz method based on the
decomposition W = Wy + Wy + - - - + W, satisfies & < C(1 + log(H/h))2.

Proof. The upper bound is immediate from (3.1). We verify the lower
bound by Lemma 3.1. For v € W, let vy = IyTv, where Iy and T were defined
in (5.1) and (4.2), respectively. From (5.2) and the equivalence (4.4), lwol2 o <
C(1+log(H/ h))zllvHig. By mapping to the reference domain with H = 1 and
scaling, we get for any glob G C 89; that || Eq(Tv — LiTv)|3 o, < CH?|o3 o,
which implies

v = wll§ o < CH?||v|)} q.
From [8], there are v; € W; such that v; + -+ + Up =0 — g and

loalte +-- + llenlif @ < € (Frllv = vollZ o + llv ~ woll20) »

completing the proof. [0

Note that Dryja and Widlund [8] proved that x < C for an analogous method
that differs only in the use of coarse linear functions as the coarse space. That
is, the use of the piecewise constant on interfaces coarse space increases the
condition number bound by the factor of C(1 + log(H/h))2.

6. Concluding Remarks. Note that in all interface decomposition
methods considered here, the support of the functions from the spaces V;
corresponding to adjacent subdomains overlap with width of at least 2h. The
glob spaces overlap with width of at least h.

The “piecewise constant” interpolation allows for unstructured domains.
This means that there is no need for the subdomains to form a coarse
triangulation and we do not need to have the concepts of an edge or a vertex
of a subdomain if subdomain spaces are used rather than glob spaces. Even for
completely unstructured subdomains, the globs can be defined as the basis of
the set algebra generated by the sets of degrees of freedom in subdomains, which
can be implemented using simple graph theoretical algorithms on the element
connectivity data.

In principle, the linear interpolation need not be related to subdomains as
well. The only properties we need are the H* stability and the L? optimal
approximation property (4.5). Thus one could use unstructured domains and
define the operator Il on a set of nodes unrelated to the subdomains.

The algorithms developed here can be applied to completely unstructured
meshes and subdomains, but the analysis and performance of the algorithms in



HYBRID DOMAIN DECOMPOSITION WITH UNSTRUCTURED SUBDOMAINS 111

the general case remains to be investigated. The theory presented here uses a
simple adaptation of earlier work for different domain decomposition methods
in the case of regular subdomains, so it applies only when the mesh and the
subdomains are “reasonable”.

For piecewise constant interpolation, examination of the proofs in Section 5
shows that it needs only be assumed that the ratio of the sizes of neighboring
subdomains is bounded; it is not necessary that all subdomains are about of the
same size H.

For the glob based methods, one can replace the solution of subproblems in
the glob spaces V; by more efficient approximate solvers, analogous to Bramble,
Pasciak, and Schatz [2, 3]. The analysis of the additive Schwarz method with
approximate solvers by Dryja and Widlund [7] can be used to show that the
asymptotic bounds (1 + log(H/h))? on the condition number are retained.
However, the decreased computational complexity comes at the cost of likely
loss of robustness.
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