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Simulation of 3D Navier—Stokes
Flows via Domain Decomposition by

the Modified Discrete Vector
Potential Model

DANIELA MANSUTTI, FRANCESCA PITOLLI

ABSTRACT. The Discrete Vector Potential (DVP) model integrates the primi-
tive variable equations of internal flows of incompressible Navier-Stokes fluids.
It provides exactly local and global mass conserving flow fields at each time
step, [1]. This feature makes the DVP model expecially suitable for domain de-
composition, as the “a priori” satisfaction of the mass conservation law in each
subdomain avoids the numerical production of mass that is generally the main
cause of the growth of spurious flow micro—structure at the interfaces.

In this work the application of a domain decomposition technique with a modified
version of the DVP model is presented. The Modified Discrete Vector Potential
(MDVP) model, adopted in each subdomain, allows to cut half of the total com-
putational effort by solving the vector potential equations and still assuming
boundary conditions in primitive variables. This results also in preserving the
advantages of the original numerical model. The chosen solution technique con-
sists of a multiplicative Schwarz procedure with overlapping subdomains.
Several numerical tests are described.

1. Introduction

The present work relates to the numerical study of the stability of the flow of
the liquid phase of artificially grown crystals. Newtonian incompressible fluids in
shallow open rectangular cavities with a horizontal differential of temperature
are assumed as a mathematical model [2]. Our attention is focused on the
determination of the unsteady solutions of the Navier—Stokes equations with
buoyancy source term and Boussinesq approximation:
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with appropriate initial/boundary values. Here, we approach in particular the
equations for velocity.

The performance of the most common methods depends greatly on the flow
formulation that they assume. On solving the model in primitive variables,
several methods meet the equation for the mass conservation by cumbersome
iterative precedures that solve the related Poisson equation for pressure. This
approach allows a straightforward assignement of the boundary values but the
residual compressibility may affect the transient regime. The computation of
pressure is avoided by solving the vorticity transport equation. In this case the
model in velocity and vorticity still presents the same peculiarities. The models
in vector potential functions provide exactly solenocidal velocity fields (at least
for confined flows) but they incur in a complicated formulation of the boundary
conditions, which is still not clear for general domains (e.g. multiple connection).

These characteristics are even more evident within a domain decomposition
approach because they result in a combined effect for the computations in each
subdomain.

‘We solve the equations for the vector potential via domain decomposition on
accepting boundary/interface conditions directly in primitive variables. By an
algebraic rearrangement of the discrete equations for velocity and pressure in a
neighborhood of the boundary/interface, we determine conditions that combined
to the discrete equations for the vector potential define uniquely the flow in each
subdomain. The solutions are exactly mass conserving at each time step like in
the case of the classical vector potential formulation but the mentioned limitation
of this model in the assignement of the boundary conditions is overcome as they
are directly and easily adopted from the physical application.

2. Domain decomposition for the MDVP model

We decompose the flow domain into slices parallel to a wall of the cavity. In
each subdomain, the MDVP model is adopted. This is based on a modification
of the discrete vector potential model (DVP) that is described in detail in [1].
In the following we outline the method.

For the sake of semplicity in the exposition, it is convenient to recall the
main steps of the DVP numerical formulation. Let us indicate with w™, p™
respectively the discrete velocity and the discrete pressure vectors for the generic
subdomain, which are assigned on a regular MAC-like staggered grid, [3]; let us
assume that

Qmw™ =—ATp+b,, (2)
Aw =0

be the matricial form of the finite difference discretization of the momentum
and mass equations (1'. 1”') at time level {,,,; @, be the matrix of the temporal,
convective and diffusive discrete terms; b,, be the vector of the body force and
boundary effects; s,, be the vector of the discrete boundary normal velocity; A
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and A be respectively the centred difference divergence and gradient operator
(for the rank(A) see [1]).

It is known that the solution of the system of linear equations (2”) may
be split into a particular solution, y™, and the general solution of the related
homogeneous system, z™, that is:

m :ym_l_'zm' ) (3)

As it is possible to build a network representing the relations assignement point/va-
riable in the adopted discretization grid [1], from network theory we get the
expression of a matrix C' (foundamental matrix) whose column vectors form a
basis of the kernel(A), which the velocity field 2™ belongs to. It holds:

AC =0,CTAT = 0,2™ = Cy™, (4)

where 4™ is the vector of the new velocity components.

From network theory we learn also an easy and exact expression for a par-
ticular solution, y™, (spanning tree).

By combining (3) and (4) into (2') and rearranging, the system which is
finally solved is obtained:

CTQCy™ = C* (b,, - QMymj. (5)

Regardless the accuracy of the solution v™ of (5), by (4") it results that
the correspondent velocity w™ satisfies exactly (2 ) Actually, it is shown that
¥™ is a discrete vector potential field, C and CT are both centred difference
curl operators, and the discrete model (5) is just a discrete form of the vorticity
transport equation for a vector potential.

The MDVP method stems from this remark and is justified by the fact that
the computation of the product matrix in (5) is more time consuming than the
determination of the solution of the system.

We avoid the computation of the whole product matrix by dlbcretlzmg di-
rectly the equations for the vector potential in the internal mesh points and
completing the system with those equations from (5) that recall the bound-
ary/interface values.

We adopt the decomposition of the velocity vector field suggested by the
DVP model (see (3) and (47"))

w=y+VAy (6)

being y, a solenoidal vector field and -y, a vector potential field. This is analogous
to the modified Helmoltz decomposition presented in [4].

The vector y is discretized at the velocity grid points; it is computed in
the way indicated within the DVP model, that is in order to meet exactly the
boundary normal velocity values and the divergence—free condition on w.

The vector potential field + is chosen to be a 3D regular vector field hav-
ing null boundary/interface tangential components and, in the interior of the
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domain, one component zero everywhere except at any fixed normal coordinate
plane. This restriction allows as well the representation of any Navier—Stokes
flow field as it is recovered directly by the DVP model (structure of the vector
4™ and the matrix C). « is determined by the following vorticity transport
equation: )

L AVAWSVAN) | ((y 4V A7) - V)V A (y+V A7))—

7
(VAy+VAY))-VIy+VAY)= (7)
= VAVAG+VA)) -VAGT.

We discretize the above equation by using centred finite differences for the curl
operator and the same schemes adopted within the DVP model for the time
derivative, the convective and the diffusive terms. Then, 7 is assigned on the
staggered grid obtained by drawing lines that connect the discrete pressure points
along the directions of the discrete velocity values.

Close to the boundary/interface, where boundary/interface values intervene
in the discrete system, we substitute locally the discrete curl of the discrete mo-
" mentum equation in primitive variables in order to accept the boundary /interface
values of the velocity and pressure fields. The discrete velocity values that fall in
the interior of the domain are still expressed according to the decomposition {6).
In this way the overall discrete system that we build, in each subdomain results
in being same of system (5) but we have avoided the cumbersome computation
of the matrix product CTQ,,C.

We have previously experienced domain decomposition for the DVP method
and reported our experience in [6], [7]. There we have reached the conclusion
that the capacitance matrix method is certainly the most efficent and accurate,
once a direct solver for the capacitance system is available. Unfortunately, in
our case the structure of this system is very complicated and its matrix has
a very large band so that a direct procedure is indeed too costly. As by an
iterative solver (Jacoby, Gauss—Siedel, ..) this method results totally equivalent
to a Schwarz method, we follow directly the overlapping Schwarz multiplicative
method: calculations are carried out by sweeping the entire domain from the
first to the last “slice”; the flow is computed at one subdomain at a time by
assuming the last updated values at the interfaces. Interface conditions are
expressed in velocity and treated like general boundary conditions. In order to
start up domain decomposition iterations, a preconditioner based on a multigrid
type method is used so as to avoid the growth of spourious flow microstructures
in the interface regions: the initial iterate is computed twice with double spacing
for the first approximation. At the moment for the solution of the system (5) a
squared conjugated gradient method is used but along the lines traced in [5], we
are studying a more specific and efficient approach.

3. Numerical results

For the following tests, we divide the domain into four subdomains over-
lapping along a mesh band two—cells large. The mesh size is 34 x 34 x 34.
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We checked the accuracy of the overall computational procedure running the
Taylor analytical 2D flow. The velocity components are the following: u =
sin7z cosmzexp(—2t/ Re ), v = —cosmzsinwzexp(—2t/ Re), [1]. We solved
the flow at Re = 1 in a cubic cavity with unitary side length by imposing the
analytical velocity values at the boundaries.

The results, that we obtained with A¢ = 0.001, exibit an average relative
error equal to 0.001 at the first five time steps.

Then we computed the classical “driven cavity” flow problem: a fluid at rest
in a cubic cavity with rigid walls, is induced to recirculate for the viscosity by an
ideal infinite lateral lid which moves at constant unitary velocity. We considered
the cases at Re = 1 and Re = 400 and compared the results with the solutions
by the DVP model for 1-domain: this agreement is up to the fifth significant
digit. As the flow is symmetric we ran the computation in half cavity. In fig. 1
we plot the isovorticity surfaces at Re = 400 for the transient solution computed
with At = 0.01 at the 640-th time step (this is very close to the steady state).
In the table are listed the number of domain decomposition iterations vs. the
time step.

#DDiter. [ 13 10 8 6 4 3 3 2 1 1 1
time step 1 2 3 5 7 9 11 13 15 ... 640

Fig. 1 Fig. 2

In fig. 2 there are the profiles of the velocity component parallel to the
driving direction, u, along the orthogonal central line for the steady state. In fig.
3 the same profile at Re = 400 is plotted as the horizontal coordinate y varies,
from the middle plane parallel to the primary vortex back to the impermeable
wall.
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Fig. 3
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