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Factorization of the Convection-Diffusion Operator
and a (Possibly) Non Overlaping Schwarz Method

F. NATAF and F. ROGIER

ABSTRACT. We propose an iterative algorithm which consists, at each step, in

the solving of the convection-diffusion equation on each subdomain. Each subprob-

lem is subject to boundary conditions issued from the approximate factorization of the

convection-diffusion operator. The method is all the more efficient as the viscosity is
" small. Numerical tests are shown.

1. Exact Factorization

We propose a domain decomposition method (DDM) to solve the convection-
diffusion equation. For an alternating Schwarz method, it is well-knowm that the
convergence rate depends crucially on the transmission conditions. In this paper,
we use extensively the Wiener-Hopf factorization to design the efficient transmission
conditions. In order to simplify the paper, we consider the following model problem
set on the domain 16, L[]0, hf:
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arising from an implicit discretization in time of the convection-diffusion equation.
This problem has to be solved at each time step. To design the DDM, we consider
temporarily the same problem set on the vertical strip ]0, L[xR. We write a factor-
ization of the operator £. By factorization, we mean the possibility to write £ as the
product of two operators which are of order one in the z-direction. One corresponds
to a well-posed parabolic problem in the direction of positive ¢ and the other one
in the opposite direction. To find the explicit form of the factorization, we consider
the constant coefficients operator. We take the Fourier transform in y of (1) (the dual
variable is denoted by k):
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which can be written as £ = —(& — A*) (& — A7), where
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Let A+ and A~ be the operators of symbols AT and A~, we have
_ 0 40 _
@) L=-v(z—AT) (5~ A7)

The term A* is positive and the term A~ is negative whatever the sign of a is. Thus,
the operator 8, — A* (resp. 9, — A™) corresponds to a well-posed parabolic problem
in the direction of negative (resp. positive) z. The expressions of At and A~ are not
polynomial in k. The operators A+ and A~ are thus non local.

We consider a domain ]0, L[xR. covered by N vertical strips [l;, L;] x R (i =
1,...,N)with possible overlap of size §. This factorization suggests the following
algorithm:

Let «7 be an estimate of the solution in domain 1, uP*! is defined as:

L(uP*) = f in domain i
]

@ aa=l, (i#1) (oo - AN = (5 — A

wes L, (£ N) (o~ A7) = (5 — A7)k

at z = 0 and z = L, we use the boundary conditions of the global problem. At each
step, N independent subproblems have to be solved. This domain decomposition
method is valuable for parallel computation.

We have here an interesting result. In the case where the operators J; — AT
and 8, — A~ are used as boundary operators at z = 0 and z = L respectively, it -
can be proved that with or without overlap there is convergence in N steps. This is
optimal since £ is elliptic in z. Nevertheless, the algorithm (4) can not be used for
practical purposes for two reasons. The first one is the non locality of the boundary
conditions in each subdomain. The second one, is that for variable coefficients a and
b, the explicit form of the factorization is not known. This is why we shall go into
approximate factorizations involving local operators.

2. Approximate Factorization

In order to obtain approximate factorizations involving local operators, we have
to take Taylor approximations with respect to k of AT and A~. We are restricted to at
most third order approximations since for higher order approximations, the sign of the
approximations of A (resp. A™) is negative (resp. positive) for high wavenumbers.
This would yield boundary conditions which lead to ill-posed problems. We do not
consider either the approximation of order three since it yields a boundary condition
of order three in y. Thus, we simply propose as approximate factorizations (even in
the case where ¢ and b are variable)
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The algorithm (4) leads obviously to new algorithms depending on the approxi-
mate factorization which is used. They read as follows:

L(u?*!) = f in domain ¢
(8) atz =1, (i#£1) (%— - A;.")(u;”fl) - (66_.1' — A;’)(u?_l)

atz=L;, (i #N) (6— — A7)t = (a_ — A7) (u)
Oz Oz

where § =0, 1 or 2 and A;.‘: are obvious notations for the operators arising from the
approximate factorizations, At x = 0 and ¢ = L, we use the boundary conditions
of the global problem. Of course, contrarily to the algorithm (4) based on the exact
factorization, the convergence of (8) in a finite number of steps is no more satisfied.

At this point, we should make clear that since the operators (5), (6) and (7) are
local, the Fourier transform is not necessary to solve (8). Thus, the proposed algorithm
may be written for variable coefficients and a general geometry. In the general case,
we siill do not have convergence results and we present here convergence results in
the constant coefficients case.

3. Convergence Results

When a and b are constant coefficients, we carry out a Fourier analysis of the
convergence of the method for N = 2. The convergence rai¢ pj(k) (j denotes the
order of the approximate factorization used in (8)) in the Fourier space between every
two steps is

XE-NEY Cern-
(9) pi(k) = (-A:%——A%) (- SH2A (1)

It can be proved thatfor a.e. k and any 6, |p;(k)| < 1. For small wavenumbers, p;
tends to zero. For large wavenumbers, p; tends to 1 if 6 = 0, and to zero as soon as
& # 0 (see fig. 3). This shows the importance of the overlap.
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4. Numerical Results

In order to illustrate the validity of the method, a 2D test problem has been
pexformed on the problem (1). All the numerical tests have been implemented on a
IPSC2 with 32 processors. The problem that we have tested consists in finding the
temperature of a fluid moving at the velocity ¥ = (a, ). The computational domain
is the square [0,1] x [0, 1] (see figure 1) , the viscosity v is equal to .001.

The picture (fig. 2) shows the isovalues of the temperature at different step time
of the algorithm for a velocity ¥ = (1, 0) and for an initial condition equal to 1 in the
middle of the domain. As the picture shows, the boundary layer at y = 0 is taken into
account with accuracy along the time. The curvature of the isovalues is due to the
effect of the initial condition. We also made computations with a variable velocity a.

The figure 4 has been obtained in the case of a steady-state computation (At =
oo) by changing the order of the approximation. The transmission conditions of order
2 yield an improved convergence since they can take into account the boundary layer
aty = 0.

From one iteration to the other, only the right hand side of the boundary condi-
tions are modified. That is why we compute the LU factorization of the convection-
diffusion problem in each subdomain before beginning the iterative procedure. This
is also a parallel task. Then, at each step, this LU factorization is used to solve the
subproblems. The last drawing (Table 1) gives the computational time and the con-
vergence rate of the algorithm as a function of the number of processors . The global
meshsize is 64 x 64 and is kept fixed. It can be seen that the computational time
is divided by two when the number of processors is doubled. But for nb = 32 the
computational time is the same as for nb = 16. This fact is due to the communication
cost between the processors which is then large compared to the computational time
for each processor since we have only 4 points along x in each subdomain. The factor
three between nd = 1 and nb = 2 case is due to the fact that with one processor
there is no domain decomposition method (DDM) and that a direct method (the LU
factorization) is indeed used. While, with two processors, the DDM is used and the
LU factorization which is made at the beginning of the iterative algorithm in each
subdomain is much Jless costly that the LU factorization of the global problem with
One Processor.
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FIGURE 1 - Computational domain
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FIGURE 2 - Isovalues of the temperature at time = 2,4 and 3
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FIGURE 4 - Relative residual vs. nb of iterations

TABLE 1 - Computational time vs. number of processors

Nb of processors  : 1 2 4 8 16 32
Computational time: 170,0 51,0 26,7 11 6,0 6,1





