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SOME SCHWARZ ALGORITHMS FOR THE P-VERSION
FINITE ELEMENT METHOD

LUCA F. PAVARINO *

Abstract. Domain decomposition methods based on the Schwarz framework were
originally proposed for the h-version finite element method for elliptic problems. In
this paper, we consider instead the p-version, in which increased accuracy is achieved
by increasing the degree of the elements while the mesh is fixed. We consider linear,
scalar, self adjoint, second order elliptic problems and quadrilateral elements in the
finite element discretization. For a class of overlapping additive Schwarz methods, we
prove a constant bound, independent of the degree p, the number of elements N and
the subdomain size H, for the condition number of the iteration operator. This optimal
result holds in two and three dimensions for additive and multiplicative schemes, as
well as variants on the interface. We then study local refinement for the same class
of overlapping methods in two dimensions. A constant bound holds under certain
hypotheses on the refinement region, while in general an almost optimal bound with
logarithmic growth in p is obtained.

1. Imtroduction. In this paper, we study some domain decompo-
sition methods using p-version finite elements in the Schwarz framework
developed by Dryja and Widlund, see [7], [8]. We consider linear, self-
adjoint, second order elliptic problems and brick-shaped elements in the
finite element discretization. In the p-version of the finite element method,
the degree of the piecewise polynomial elements is increased in order to
achieve the desired accuracy, while the mesh is fixed. This is in contrast
to the standard h-version where fixed low order polynomial elements are
used and the mesh is refined in order to obtain accuracy. For an overview
and basic results about the p-version, see Babuska and Suri [3], Babuska
and Szabo [4]. For other domain decomposition p-methods based on it-
erative substructuring ideas, see Babu$ka, Craig, Mandel, and Pitkaranta
[1], and Mandel [9], [10], [11], [12]. The results of this paper were inspired
by works for the h-version finite element method by Widlund [17], Dryja
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and Widlund [7], and Bramble, Ewing, Paranshkevov, and Pasciak (6], [5]. -

A brief description of the model problem and its discretization with
the p-version finite element method is given in Section 2. In Section 3, an
additive Schwarz method (ASM) with overlap is considered. It has been
proved in Pavarino [14] that the condition number of the iteration opera-
tor of this method is bounded by a constant independent of p, the number
N of subdomains and the subdomain size H. In section 4, this result is
extended to the same method on the interface. In this case, the variables
associated to the interior basis functions of each element are eliminated
first, and the reduced linear system for the interface variables, known as
the Schur complement, is solved by an overlapping ASM. In Section 5,
local refinement for an overlapping ASM is considered. In this case, the
degree p of the polynomial basis functions is increased only in selected
subregions. Optimal and almost optimal bounds are obtained, depending
on the choice of refinement subdomains. Numerical experiments confirm-

ing these results, as well as proofs and details, can be found in Pavarino
[14], [13].

2. The Model Problem. We consider a model problem for linear,
self adjoint, second order elliptic problems, on a bounded Lipschitz region
§2. Dirichlet boundary conditions are given on I'p , a closed subset of
0Q with positive measure, and Neumann conditions are given on I'y =
00\ I'p . For simplicity, we suppose that the Dirichlet conditions are
homogeneous. Neumann and mixed boundary conditions are considered
in Pavarino [14]. In variational form, the model problem is:
findu €V = Hp() ={ve H(Q) :v=00nTp} such that

a(u,v) = f(v), Vve V,

where the bilinear form
a(u,v) = /QVu-Vvdx

defines a semi-norm |u|p ) = (a(v,w))? in H(Q), and a norm in
V = HL(Q). Our analysis works equally well for any general self adjoint,
continuous, coercive, bilinear form b(-,-). The discrete problem is given
by the p-version finite element method. A friangulation of the region
§2 is introduced in terms of non-overlapping brick-like elements §; b=
1,--+, Ne . Using affine mappings onto the reference square or cube, our
analysis also works for general quadrilateral elements. We suppose that
the original region is a union of such elements and we denote the mesh
size by H.

We define @, to be the set of polynomials of degree less then or equal
to p in each variable, i.e. in three dimensions

Qp = span{z*y’2* : 0<i,4,k < p}
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and we discretize the problem with continuous, piecewise, degree p poly-
nomial finite elements:

VP ={pecC'0): ¢l €Qp i=1,---,Nc}.

Then the discrete problem takes the form:
find up, € VE={veVP:v=00nTp} such that

(1) a(up, vp) = f(vp), Ve VE.

The choice of a basis for (), is an important computational issue, see
Babusgka, Griebel and Pitkdranta [2]. We follow the standard choice in
the current literature of a hierarchical basis consisting of nodal, edge, face
and internal functions. On the reference cube [—1, 1]3 in three dimensions,
these are polynomials vanishing on three, four, five and all six faces of the
cube, respectively.

3. An additive Schwarz method with overlap. For simplicity,
we explain the method in dimension two using square elements €2; and we
consider homogeneous Dirichlet boundary conditions only; see Pavarino
[14] for generalizations to three dimensions using general quadrilateral
elements and other types of boundary conditions. Let N be the number
of interior nodes. Our finite element space is represented as the sum of
N + 1 subspaces

VE=V{+V+---+ V5.

The first space V{ serves the same purpose as the coarse space in the
h-version. Here we use V¥ = V}, and VP = VP HG(Q) . Q is the
2H x 2H open square centered at the i-th vertex, see figure 1. As in the

Qi,| iy
ﬂig Qi4

Fia. 1. The substructure S, = interior of iy Qe iy U Qs

h-version, the algorithm consists in solving, by an iterative method, the
equation

(2) Pvpz(P0+P1+"'+PN)'Up:gp;
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where the projections P; : V5 — VP are defined by

(3) a(Pyvp, ¢p) = alvp, dp) , Vo, € VP

and g =N, Piup . The following theorem has been proved in [14]:
THEOREM 3.1. The operator P of the additive algorithm defined by
the spaces VP satisfies the estimate k(P) < const. independent of p, H
and N.
Here we just remark that the lower bound is obtained via Lions’ lemma, by
partitioning a finite element function in V3 as v, = 2 Upyi , Vpi € V;.
The first term vy = flvp is the L?—projection of vp onto V. It can also
be defined by smoothing and interpolation as in Strang [16]. The other
terms are vy, = Ip(0;(vp —vpp)) , where {6;} is a special partition of unity
consisting of linear combinations of the standard basis functions for Q1.
Near the boundary, the construction of these 0; is not trivial, especially
where 0 is L-shaped or has cracks. I, is an interpolation operator defined
locally from Qp41 to @, as follows. On the reference square [—1,1]2, the

interpolation nodes are the (p + 1) points (Tn, Tm), where the z),s are
the zeros of the polynomial

(4) Losi(z) = /_ 1 L,(s) ds.

Here L,(s) is the Legendre polynomiél of degree p. The proof is then
based on the

LEMMA 3.2. The interpolation operator

Iy : Qpa([=1,1]%) — Q,([-1,1]2)
s uniformly bounded in the H!— seminorm, i.e.

Hp(Hlen < const.|f]g Vf € Qpri([-1,1%).

The proof of this lemma is technical: choosing an appropriate basis for
Qp+1, we bound the eigenvalues of a generalized eigenvalue problem.
In the three dimensional version of the method, the main technical re-
sult is again the uniform boundness of the interpolation operator I, :
Qp+1([-1,13) - Q,([-1, 1) in the H!— seminorm.

4. Overlapping ASM on the interface. As we mentioned in Sec-
tion 2, the basis functions spanning V? can be hierarchically ordered in
groups of interior, face, edge and nodal functions. If the unknowns as-
sociated to the interior functions are eliminated, then the reduced Schur
complement can be solved with the overlapping ASM introduced previ-
ously. More precisely, the discrete problem is now:
find u, € V3 such that

(5) a’(u;m vp) = f('Up) ) Vo, e ‘75 »
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where ffg is the subspace of the discrete harmonic functions of VE. A
function v € V? is said discrete harmonic if

a(v,$) =0,

for every ¢ € V? that vanishes on the interface I' = |J; ;. The algorithm
is defined by the following decomposition of V:

VB VR VP4 VT,

where VP = VP H}(Q) and @} and V = V{ are defined as before. In
terms of projections P; : V5 — VP, the method solves iteratively the linear
operator equation

6) Py, = (Po+ P+ +Pn)op=gp-

We can then prove a result analogous to Theorem 3.1:

THEOREM 4.1. The operator P of the additive algorithm defined by
the spaces f/f satisfies the estimate k(P) < const. independent of p, H
and N .

Proof. The proof of the upper bound is the same as in Theorem 3.1. To
obtain a lower bound via Lions’ lemma, we use the previous decomposition
of a function of V? C VP obtained in the proof of 3.1:

N N
Up = Z”p,i and Z a(p,i, Vp,i) < C3a(Tp, Tp)-
=0 =0

We then restrict each component vy, ; to ' and extend it as a discrete har-
monic function ¥, ; € V. Since the discrete harmonic extension minimizes
the energy, we have obtained the desired decomposition. 0

5. Local refinement in two dimensions. For standard h-version
finite elements, local refinement can be introduced by selecting and re-
fining some elements of a coarse triangulation. This process can be ap-
plied recursively and multilevel methods have been considered. For the
p-version finite element method considered here, local refinement consists
in increasing the order p of the polynomial basis functions only in se-
lected elements of the fixed triangulation. This can be of interest in many
applications where the accuracy of the numerical solution needs to be in-
creased only in certain parts of the domain. In this section, we consider
local refinement for the method introduced in Section 3.

With the same notations as before, we select N < N interior nodes.
Let I” be the set of refinement indexes. With each selected interior node
z;, we associate a subdomain 2, defined as before as the 2H x 2H open
square centered at z;. The region of refinement is then

Qr'—‘UQ{i’ el
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and the finite element space
VP= VPV 4+ VR,

Again, V¥ = V} is the analog of the h-version coarse space and VP =
VPN HL() are the local spaces. :

The discrete problem is now posed'in the refinement space V}? :

find u, € V? such that

(7 a(up, vp) = f(vp) , Vo, VP.

The main result of this Section is the following;:
THEOREM 5.1. The operator P of the additive algorithm defined by
the spaces V' satisfies the estimate

k(P) < const.
if there are no isolated points on 0%, and
K(P) < C(1 +logp)®

otherwise.
A point on 89, is isolated if it is not a limit (accumulation) point of 92, .
This result specifies which choices of refinement points lead to a bounded
condition number. It is interesting to note that if a whole edge is isolated
on ., then we will still have a constant bound. The proof of this theorem
can be found in Pavarino [13] and is based on a series of technical results
concerning the decomposition of discrete harmonic polynomials and on
Theorem 3.1. The main tools used in the proof are Markov’s theorem
(see Rivlin [15]) and a p-version analog of the decomposition lemma 3.2 in
Widlund [17]. A two dimensional extension theorem for polynomial finite
elements (see Babuska, Craig, Mandel and Pitkdranta [1]) is needed to
prove the logarithmic bound, while the constant bound can be obtained
without it.
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