Contemporary Mathematics
Volume 157, 1994
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ABSTRACT. The fully adaptive multigrid method (FAMe) is a finite element
based elliptic solver integrating self-adaptivity, error estimation and efficient
iterative solution. Refined elements are not restricted to predetermined re-
gions and need not be grouped in patches. Instead, whether an element is
refined, is decided individually for each element using an integrated error in-
dicator. The refinement process induces a multilevel structure and therefore a
natural decomposition of the solution space into a nested sequence. This can
be exploited to define an efficient solver and error estimator.

1. INTRODUCTION

This paper presents a description of the virtual global grid refinement technique
and of the multilevel adaptive iteration as the basic concepts of a fully adaptive
multigrid method. This idea is related to multigrid, hierarchical bases, and multi-
level Schwarz methods, see e.g. Dryja and Widlund [2], Bramble, Pasciak and Xu
[1], and Yserentant [11].

Virtual global grids are a recursive infinite data structure suitable for adaptive
mesh refinement algorithms. The infinite structure can be handled using the mul-
tilevel adaptive relazation, a variant of relaxation techniques employing a so-called
lazy evaluation. Mathematically this leads to an incremental construction of a finite
element approximation space and the corresponding finite element solution.

In the core of the paper we demonstrate that the resulting algorithm is fast and
robust. The analysis is based on the appropriate multilevel additive Schwarz oper-
ator (BPX-operator). It can be shown that the condition number of the multilevel
operator is bounded uniformly, independent of the number of levels, and this in
turn leads to fast convergence of iterative solvers. Furthermore, it can be used to
construct simple error estimates that are based on the multilevel structure. These
results show that the algorithm is robust, and motivate the virtual global grid mesh
refinement strategy.
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proc SequentialAdaptiveRelaxation( 8, z, S )
assert( § D S(6,z) )
while( S # 0 )
pick i € §
if |0;(z)| > 6 then
rT—IT+T1;
8 — S U Neigh(i)
end if
assert( § D S(6,z) )
end while
assert( S =0)
end proc

FIGURE 1. Sequential adaptive relaxation

2. VIRTUAL GLOBAL GRIDS AND MULTILEVEL ADAPTIVE ITERATION

For a polygonal bounded domain § C R? we assume that a suitable initial
triangulation 7p is given. A regular refinement 7; of 7 is defined by connecting
the midpoints of each of the triangles in 75, thus partitioning each triangle into four
congruent subtriangles. If this process is repeated, it generates an infinite sequence
of nested triangulations {7;}icxy,. This infinite, recursive construction of meshes is
the virtual global grid structure. Of course it cannot be represented directly on any
finite machine. Therefore, we adopt the notion of lazy evaluation, where portions
of the mesh are only allocated, when required by the solution process.

We distinguish between live nodes, that is nodes requiring individual values,
and ghost nodes that have default values only. Ghosts values need not be stored
explicitly, but can be calculated from nodes on coarser grids, whenever they are
needed. It is natural to define the value for a ghost node by (recursive) interpolation.
In hierarchical basis representation, this structure becomes particularly elegant,
because ghost nodes are simply characterized by having a vanishing value. A more
detailed description of this mesh adaption concept is given by Riide [6, 7].

The virtual global grid data structure must be complemented with an effective
solution algorithm and error indicator. We propose a multilevel iteration as intro-
duced in [6, 7]. The core of this method consists of adaptive relazation, as shown
in the program fragment of Fig. 1.

The adaptive relaxation is based on the concept of an active set §. The idea is
that relaxation needs only be performed on nodes (equations) with large residuals.
The active set is the means to find these nodes efficiently.

In each elementary relaxation step, an arbitrary node is selected from the current
active set. If relaxation leads to a large change from the current value for the node,
the value is updated. Then, however, all neighboring nodes must be set active.

If the relaxation produces only a small change, then the update is skipped, and all
neighbors keep their status. In any case, after the inspection, a node can be deleted
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from the active set, because a new relaxation would reproduce the same result.
Thus the active set grows and shrinks depending on the solution characteristics.
The algorithm naturally terminates, if the active set is depleted. This in turn
guarantees that all residuals are small.

This single level relaxation must be extended to the multilevel structure, leading
to a rather intricate algorithm, described in Riide [6, 7). Here we only remark that
all manipulations can be organized such that the overhead remains small compared
to the numerical work involved.

The adaptive relaxation is an almost ideal supplement of the virtual global grid
structure. If a ghost becomes active it must be set lve. This simple concept
produces a very effective mesh adaption technique, because each such change can
be interpreted as an enlargement of the approximation space.

3. THEORETICAL BACKGROUND

In this section we now outline the theoretical background for the fully adaptive
multigrid concept. We focus on the prototype case of a symmetric, elliptic, sec-
ond order partial differential equation subject to homogeneous Dirichlet boundary
conditions. In weak formulation this can be written as: Find u € H}(£), such that

(1) a(u,v) = ®(v) for all v € H}(R),

where a(:,) is an H'-elliptic bilinear form and & is a continuous, linear functional.
The hierarchical mesh structure leads to a nested sequence of finite element spaces

) VwCWcC---CV=H.

We are interested in solving a finite element problem

(3) a(uk,vi) = ®(vk) for all v € Vk.

By introducing the nodal basis Bx of Vx this reduces to an algebraic system
(4) Aguk = fx,

where we interchangeably use ux to stand for the function in Vi and its coefficient
vector in the representation with respect to Bg.

Multilevel algorithms can be introduced on the basis of projection operators
P; : V — V; that are defined by

(5) (Pju,v;); = a(u,v;) for all v; € V;

where (+,-); is a "natural” bilinear form in Vj. Algebraically, for ux € Vg, K > j,
that is the projection P; restricted to V. can be written as

(6) P; = I¥D; I} Ax,

where IK = (I})7 is the prolongation defined by the natural embedding of V; in
J K N
Vi, i < K, and D; is a matrix that defines the scalar product (-,-); with respect
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to the basis B;. The additive Schwarz operator of Vx with respect to the subspace
system {V;};o,... x is defined by

(7) P=)"P,

P depends on the the scalar products (-, -);, that is the choice of the D;. Typically,
D; is chosen as an operator that is simple to invert but such that (-,-); is equivalent
to the Ly-inner-product in Vj, scaled by a constant. Possible choices are D; =
diag(4;), that is the diagonal part of the stiffness matrix on level j. An alternative
is the choice as D; = diag(4’), that is a diagonal matrix with constant entries.
These two alternatives lead to the multiple level diagonal scaling (MDS) and the
BPX-preconditioner, respectively. For more details see Zhang [12] and Bramble,
Pasciak, and Xu [1].

The initial level plays a special role. To make the theory independent of Vp,
we choose Do = Ag. Algorithmically this corresponds to solving the coarsest level
problem in each application of P. Analogous to P; and P, we finally define ¢; and
$ by

(8) (¢j,vj)j = <D('Uj) for all v € V}',
K

> 6.

j=0

Under the assurmptions made in this paper, the following theorem holds.

(9) ¢

Theorem 1 (Oswald). The variational problem (1) is equivalent to the operator
equation

(10) Pu = ¢.

There ezist constants 0 < c; < ¢ < 0o independent of the number of levels K, such
that the spectrum of Py can be estimated by

(11) 1 £ Amin(Pv) € Amax(Pyv) < ca.

Proof. See Oswald [3] O

Similar structures have been studied by Xu [10], Bramble, Pasciak and Xu [1],
Yserentant [11], Zhang [12], and Dryja and Widlund [2].

We now study applications of this theorem for iterative solvers and error esti-
mators. Clearly, the explicit construction of P is too expensive, because P is not
sparse. However, P can be applied to a vector according to its definition as a sum.
Thus iterative techniques, like the conjugate gradient method can be applied, and
will yield a solver whose rate of convergence is independent of the number of levels.
Thus the multilevel structure leads to asymptotically optimal efficient solvers.

The application of the operator P seems to be parallelizable. However, typically
the individual terms in the sum should not be calculated independently. The cal-
culation of the coarsest level term produces all finer level contributions as a side
effect, so that computing them in parallel makes no sense. For domain decom-
position based additive Schwarz methods this is different. There the Pju may be
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computed in parallel. However, to have mesh-independent convergence rate with-
out the subproblems becoming too large, the domain decomposition method must
also be augmented with a coarse mesh.

Assume that ug,u} € Vi and u} = Ag'fi is the correct solution of the level
K equations. We introduce the scaled residual of level § by

(12) 7; = DI Ak (u — uk).
Note that
K
(13) P(uj —ug) =Y IEF;.
i=0

We have thus related known quantities (the residuals) to unknown ones (the error).
Using the properties of the additive Schwarz operator we derive error estimates in
the Lo- and the H!-norm.

Theorem 2. There exist constants 0 < ¢g < ¢; < oo, such that

K K
(14) | DIl <lu—wla<e (D7
J=1 Lo J=1 Lo
and
K K
(15) co Y 7 D7 < lu—w*|fn < e > 7Dt
j=1 j=1

Proof. See Riide [8]. For the energy norm estimate see also Oswald [4]. O
These two error estimates show that in the multilevel context residuals are directly
related to the algebraic' error. Note that this is not true for a single level, where
residuals must be multiplied with the condition number to give error bounds.

Theorem 2 shows that in the multilevel context it suffices to eliminate ail large
residuals. Conversely, when no large residuals remain, the iteration will have pro-
duced an approximation with small algebraic error. Thus the multilevel adaptive
relaxation is a robust algorithm, because it has been constructed such that the error
estimate is satisfied at termination.

Beyond this, equations (14, 15) have the additional feature that they are in-
dependent of the number of levels. They formally also produce estimates for the
discretization error, if we let the number of levels K tend to infinity. In the context
of hierarchical basis and virtual global grids, this can be exploited, if we use regu-
larity assumptions to bound ghost node residuals by those available for live nodes
on coarser levels.

Furthermore, the relaxation of an individual equation automatically produces
change in the error bound, and thus estimates the local contribution of the node
to the error. In the case of a live node, a relaxation leads to a reduction of the
algebraic error, for a ghost node also to a reduction of the discretization error. As

1We distinguish between algebraic errors, that is errors of the iterative linear system solver
with respect to the true solution of the algebraic equations, and the discretization error, that is
the error of the (correct) algebraic solution with respect to the true solution of the differential
equation.
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both kinds of errors are estimated by the same mechanism, we also have criteria
when to switch between (algebraic) iteration and mesh refinement. In fact, the
multilevel adaptive relaxation and virtual global grids can switch between iteration
and refinement on a node by node basis.

The adaptive relaxation can be shown to produce an efficient algorithm by its
property to relax the large residuals only. It can be interpreted as a more efficient
variant of the Gauss-Southwell relaxation (see Southwell [9]).

The fully adaptive multigrid method terminates naturally, when the large resid-
uals have been removed on all levels. Sophisticated data structures (see Riide [5])
can be used to trace all the changes and dependencies within and between lev-
els. This process by definition provides guaranteed accuracy and robustness of the
algorithm.

4. CONCLUSIONS

In this paper we have outlined how recent results from the theory of additive
Schwarz methods and the multilevel splitting of finite element spaces can be ex-
ploited to construct effective multilevel adaptive algorithms that are efficient and
robust.
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