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Domain Decomposition Method Coupling Finite Elements
and Preconditioned Chebyshev Collocation
to Solve Elliptic Problems

C.R. SCHNEIDESCH {, M.O. DEVILLE 1, EH. MUND {.

ABSTRACT. This paper presents a mixed discretization method based on
domain decomposition technique which couples the preconditioned
Chebyshev collocation to the finite element method. Test problems show
that the accuracy of the spectral method is regained if the finite element part
of the domain has limited extent.

1. Introduction

Various spectral discretization methods, known to be very accurate when the
solution to be approximated is very smooth, are currently developed and used to solve
partial differential equations [1]. Difficulties to apply such high-order approximations
to real-life problems arise however when the function to be approximated presents
singularities. On the contrary, the finite element methods, which restrict the
approximation to piecewise low-order polynomials defined over very small domains,
are consequently well suited to produce acceptable solution in the presence of
singularities.

Some methods combine the advantages of each one, such as the p-version of the
finite elements method [2] or the spectral element method [6]. However, these
methods use the same approximation all over the discretized domain. A totally
different approach is to couple distinct finite element and spectral discretizations
together in the same solution procedure. The approximation functions will thus be
piecewise polynomials on one part of the computational domain and high order
polynomials on the remaining part with a matching condition at the interface. This
way has been investigated for the spectral elements method [3].
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In the context of the preconditionned Chebyshev collocation, we developed a
general multi-domain decomposition method to solve elliptic equations based
simultaneously on both discretizations : in some subdomains, the problem will be
approximated by a finite element method in its weak Galerkin formulation while in
the remainder of the computational domains the solution will satisfy a Chebyshev
collocation technique. The preconditioned Chebyshev collocation presents major
numerical advantages [4,5] and has been demonstrated to be an efficient way to attain
the attractive properties of a spectral method. Since the initial step of its
preconditioned iterative algorithm consists in the computation of a global finite
element solution, it appeared natural in such a framework to embed in the same
iterative procedure both finite element and spectral discretizations.

In this paper, we present the first results of this method applied to the solution of
second-order elliptic problems. For the sake of simplicity, the domain of interest is
decomposed into rectangles but it can be decomposed into curved quadrilaterals if
needed [7]. The interface condition [7], naturally incorporated into the FE
preconditioning of the full Chebyshev collocation, relates neighbour subdomains
through the normal jump of spectral fluxes across internal boundaries. A weak C!
continuity is consequently achieved at the interface, While coupling finite elements,
the jump of spectral fluxes is replaced by a difference between the weak flux induced
at the interface by the Galerkin finite element discretisation and between the spectral
flux from the subdomain where the collocation technique applies. After a short
description of the principles of our method, we show on test problems that global
solutions may be fairly more accurate by using the mixed FE/SP discretization
instead of simple full FE.

2. The Method

Given a function fe LZ(Q), we consider the 2-D Helmholtz problem :

. {-Au+u=f,onﬂ.
a.n u=0, on the boundary 0Q .

Letus denote by N the couple (N, Nyx,) eNx N, where N is the set of natural

numbers. The domain Q is broken up into several non-overlaping subdomains €.
The decomposition imposes that the number of degrees of freedom (d.o.f.) in the
direction of the common side must be the same in each adjacent subdomain, leading
to conforming finite elements in the preconditioner.

For each one of those subdomains €2, a suitable mapping associates the collocation
grid defined by the tensor product of one-dimensional Ny, Gauss-Lobatto-Chebyshev

quadratures in the reference square to the locally corresponding physical collocation
(sub-)grid. The collection of the local sub-grids composes the overall collocation grid
and FE mesh.

The matrix system corresponding to the Chebyshev collocation discretization of
(1.1) over the entire domain Q takes the form :

12) L.x=b .
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In Eq. (1.2), x denotes the vector of collocation values of u over Q U 0Q and the
collocation operator L. includes the collocation approximation of the boundary

conditions. Thus, the term b also incorporates the imposed boundary values.

To improve the numerical solution of the resulting system (O(N4) conditioning of
the discrete operator and very large bandwidth), the collocation system (1.2) is
preconditioned by finite elements (FE). The numerical scheme is based on the
preconditioned Richardson iteration technique :

(13) L&t - x5 = +a@-L.xY)

where L is a finite element approximate operator and o a relaxation factor. In full

Chebyshev collocation approximation of elliptic problems, a relaxation factor o set
to 1 (one) drives optimal convergence rates. In (1.3), the superscript k denotes the
Richardson index. The initial guess of this iterative procedure is the solution of the
problem (1.1) resulting from the associated FE Galerkin approximation.

When coupling FE to collocation discretization (SP), we split the set of
subdomains into the subset {Q‘;,B) where the solution will be sought in the FE

space and into the subset {QF'} where a Chebyshev collocation solution is to be
computed. The general iteration procedure (1.3) still holds and may, for the sake of
simplicity, be expressed as

(14.2) = Kol {tm) in (QF)
(14b) =0l G ) . (0l

where Iy is a projector in the space of polynomials of degree in in each direction.

The term [ is composed differently, depending on the region considered. For
any unknown in (Q‘;f}, the corresponding Lyy is computed direcfly from the FE
residual f-L x¥ (f denotes the FE right-hand side of the Galerkin problem). Since
K is the FE solution of the weak form of (1.1), whose operator is identical to Lyg,

the FE residual vanishes everywhere over the FE sub-domain(s) but at the interface
where it provides the weak flux (Neumann contribution) from the FE current

solution. In the SP part of the domain, rpy is the finite clement right-hand side
obtained through the projection of the collocation spectral residual b_-chk. At any
interface, this term also incorporates the integrated spectral flux across the interface.

Consequently, for any unknown of the global system which lies on the interface, the
corresponding right-hand side accumulates the weak FE flux from the FE part and the
integrated spectral flux together with the residual from the SP part. In a global
iterative solution procedure, the solution in the FE part(s) of the computational
domain is slightly influenced by the accurate spectral interpolation through the
common interface. More details on the method can be found in [7].
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3. Numerical Results

In order to test our method, the homogeneous problem (1.1) in the [0,1]x[0,1]
square was solved with a function f corresponding to the exact solution u = xy (1-x)
(1-y) In(0.1+x+y) which presents steep variations close to the origin (problem tp1).
In one of the partitionings considered (sce [7]), the domain is decomposed into nine
subdomains where four FE subdomains fill the comners and the remainder are devoted
to full SP collocation. The final solution obtained through the iterative procedure
(1.3) is compared in Figure 1 to the initial FE solution and the full SP solution of
the classical procedure in the case where the comer subdomains are relatively small
(intermediate spatial discretization 7x7 d.o.f. each with 17x17 d.o.f in the center
subdomain, thus 29x29 global equivalent d.o.f.). In general, we observe that the FE
approximation limits in the mixed method the accuracy in the spectral subdomain.
However, the smaller the extent of the FE part is, the larger the gain in accuracy for
the SP approximation will be.

We also solved over [0,1]x[0,1] the Laplace equation with the function f set to
1 (one) and homogeneous Dirichlet boundary conditions. This problem (tp2)
presents geometric singularities in the four comers where the differential equation is
enforced while the boundary conditions lead to a vanishing Au. It will serve us to
test our coupling method in the presence of boundary singularities, which are known
to alter significantly the rate of convergence of a spectral method. This problem was
already solved by classical preconditioned Chebyshev collocation and compared to a
singular FE analysis [4]. We resorted to the same 9 subdomains decomposition than
above, since this combination was demonstrated as the most advantageous one. A
comparison of the absolute analytical errors (for 25x25 eq. d.o.f.) can be found in
Figure 2 which illustrates the gain achievable by our method. While the discrete L.,

norm of the error for full FE converges asN’z,theFE/SPmordecays asN>. Inall
the test cases, the increments of the Richardson process reached machine round-off
after roughly 20 iterations.
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a. Comparison for all the discretization methods (FE, FE/SP and SP) on the X=0.5 cross section

Absolute analytical error
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Figure 1 Comparison of the absolute analytical errors for test problem tpl
(9 subdomains bilinear FE preconditioner, 29x29 eq. d.o.f.)
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a. Comparison for all the discretization methods (FE, FE/SP and SP) on the X=0.5 cross section

Absolute analytical error
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b. Comparison full FE and mixed FE/SP

Figure 2 Comparison of the absolute analytical errors for test problem tp2
(9 subdomains bilinear FE preconditioner, 25x25 eq. d.o.f.)
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