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Domain Decomposition and Multilevel PCG Method
for Solving 3-D Fourth Order Problems

JIACHANG SUN

ABSTRACT. We have studied some efficient algorithms for solving biharmonic
equation in 3-D based on finding preconditioners on interface and on subdomains,
respectively. Numerical results on Transputer T800 for some model problems are

presented.

1. Introduction

It is well-known that the biharmonic equation arises from some 2-D
elastic problems, such as plane stress functions and thin plate bending
problem. However, even in 3-D elastic and structure mechanics fourth
order partial differential equations appear often. As an example, when
the static force field is constanst, all three components of displacements ,
six components of stress and strains satisfy biharmonic equation.

Consider the partial differential equation

(1.1) A’u=f in Q,

where () is decomposed into several regular domains, with boundary con-
ditions

ou

=— = oa.
(1.2) U= 0 on
or
(1.3) u=Au=0 on 0.
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In theoritical point of view, one of difficulties for solving fourth order
problems is that the well-known maximum principle for second order prob-
lem has to be modified now. In computing point of view, the ill-condition
of resulting difference equation for fourth order problems is more serious
than for second order problems.

In a single regular subdomain case, the problem in 2-D was solved
numerically by using piecewise bicubic C* and piecewise bivariate cubic
C! B-spline finite element method (cf. [5] and [6]). In this paper, we use
tensor product of C! quadratic B-spline for 3-D problems.

For a given domain 2, we have a ’coarse’ rectangular partition 7g =
U;7§. Successively finer partition {r,k = 1,2,...,J} are defined by
connecting the midpoints of the edges. We denote by h; the diameter
of {ri}, H = ho, h = h;. The subspace M is defined to be the C*
continueous functions on 2.

Let Bf (), B (y) and BE(2) (i1 =1,...,m;~1,43 = 1,...,ma—1,
i3 = 1,...,m3 — 1) be the quadratic B-spline functions centered at Zi+1
Yitd and z;_ , 1 respectively. Let

(14) $:(2,9,2) = B (2) B (y) B} (2).

Then {¢¥}7*, (nx = dimM,,) are the tri-quadratic C1 B-spline bases for
the space M. Namely

Mg = span{q&,’f b

i=1"

Thus we may construct a nested sequence of finite-dimensional spaces
H
My C M,y C...CMz=M, J:longL-21

This finite dimensional variational problem leads to the following linear
system

(1.5) Az =b.
where A = la(i,8;)] , b= [(£, ;)]

a(u,v) = /bAuA'vdz,
Q

and z is the vector of unknowns z; (the coefficient of B-spline ¢;).
It is often convenient to scale B-spline basis as follows:in d-dimension

- 4-d
oF = {n,7 ¢¥},d=1,2,3.
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The corresponding stiffness matrix with respect to M;, is defined by
AF = [a(BE, 85) s e -

Suppose the defined domain Q is decomposed into two different cubes
4 and Q, with a common inner surface interface, for examples, L-Shape
or T-Shape in 3-D, see Fig.l. The coefficient matrix A in (1.5) can be
expressed in block form as

A 0 Az Agg

0 Ay Az Ay
Aly Al Ass Ass
Aly AL A, Au

(1.6) A=

2. An analysis on fourth order interface

The Schur complement of the resulting matrix (1.6) which is corre-
sponding to the reduced surface interface operator can be written as

Ass A34:l_[—413 A14]T[A1_11 0] Az A14]

(21) C¢= [A,;;Z:; Agg Axz Az 0  A;y | 1Az Ax

Figl. A model of T-Shape in 3-D

It is clear that the Schur complement C in (2.1) is dense and expan-
sive to form explicitly. Moreover we have proved in [2] that in 2-D case
C is serious ill-condition in the sense the condition number

K(C) = O(R™3)

It is not difficult to claim the above conclusion is still valid in 3-D case.
There are two different way to analyse the behaviour of the fourth
order interface. One is to do similar analysis directly, by using the known
technique for related second order interface. The other is to use the known
results on second order interface and establish a relationship between the
two interfaces. This means a good PCG interface precondiitoner for fourth
order problems can be converted from the related second order problems.
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THEOREM 1. If M, is a good interface preconditioner for a second order
elliptic operator, then

_ | Ma(I+M3)  —May(I- M3)
(22) M= [“Mz(f - M3) My(I+M3)
is also a good interface preconditioner.

Now we may extend some analysis, for examples Dryja’s, Golub-
Mayers’ or Tony Chan’s work for second order interface from 2-D to 3-D.
For 3-D Dryja-like interface preconditioner may be simply written in the
form

(2.3) M, =v-A
To extend Golub-Mayers’ [4] analogue to 3D, we consider Laplace equa-

- tion over upper half space. A resulting difference scheme can be written
as

{(BL + E{Y) (B2 + E5 V) (Es + E5*) + 2[(By + ETY) (B, + E; 1)
+(E2 + E; ) (Bs + E3') + (Es + B3 ')( By + B )] — 32T upee = 0

where F; is shifting operators: Eyu,s = U164, By Ypgr = Upo1,s 2, €CE.
Substituting the following generating function

oo oo
¢t(zl,z2): Z z z{zgurst
7= —00 $=—00

with ¢,— > 0 as £~ > oo into the discretization scheme leads to a second
order difference equation with respect to t:

{20z + 27" )22 + 2571) — 32T +{2(z1 + 27 + 22 + 7571)
+(z1 + 5 ) (z2 + 23 (B + BT )} =0

The solution for upper space is equal to

{8e(z1, )} =16 — (21 + 27 Yza + 27 1)~{[16 — (21 + 27" + 22 + 250
—[2(z + 27 22+ 2 V(o 4 27 (2 + 25 )PP

By symmetry there is a similar solution for lower half space. Put the two
solution together we obtain the solution for whole space

di(z1,22) = [2(z1 + 271 + 22 + 271) — 320 + 241
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Let 2y = eiel,zz = e Thus we have an estimate for eigenvalues on
the interface of second order elliptic problems in 3-D. Finally a interface
preconditioner can be taken as

A(61,02) = de(21,22)

(2.4) My, = WAW  with A = Diag{A}

3. Paralle]l multilevel B-spline preconditioners

We shall use the following notation as shown in {1]. For each k =
0,1,...,J, we introduced the following operations:
1° The operator A : My — Mjy is defined for u € My by

a(Axu,v) = a(u,v), for allv € My

Ifk=J, we denote A = Aj.
2° The projection Qx : M — My, is defined for 4 € M by

a(Qru,v) = (u,v), for all v e My

THEOREM 2.
K,(Ak) = h,:4.

Similarly to [1], we shall study the following preconditioner

J
B=A7"Qo+ > A Qx

k=1

for fourth order problems, where Ax = Anaz(Ar).

In order to obtain some main results, we need introduce a spline
interpolant operator I : C{) — M} defined on midpoints. This spline
interpolant is unique. By using the B-spline properties, it is not difficult
to verify that for u € M,

Hu — Ik’u”Lz(Q) < hi”ulgz(g).

Thus, we obtain the following results [7}.
LeEMMA. 1°For u € M, |lu — Qxul|z2(a) 2 hillulﬂz(m-
2°For u € My, ||(I — Q-1 )uﬂiz(n) < A; a(u,u)

3° |Qrulm2(a) = lulazn), Yu€ M.
4° a(Qyv, Qi) < a(v,v), Yv € M.

Thus, follow the idea of [1], we may obtain
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THEOREM 3. For allve M,
(J + 1) a(v,v) < a(BAv,v) < (J +1)a(v,v).

Hence
k(BA4) < (J +1)%.

In the above, the preconditioners for biharmonic problem are pre-
sented in terms of operators on the spline finite element spaces. Now we
turn to get a preconditioner in terms of matrix. For k < I, we note that
My C My, hence each ¢¥ is a linear combination of some ¢}. Let T} be
the representation matrix of the spline basis {¢¥} of My in terms of the
spline basis{¢!} of M;. Namely

3* = T} @

where &% = (¢F,. .., ¢,’§k )t and "t” denotes the usual transpose operation.
The above preconditioner B in terms of matrix is given by

J
(3.1) B =Y mTiT
k=0

where T}, = T,;I .
It can be shown that

k(BA) = x(BA)

Hence we can conclude that the matrix B given by (3.1) is a good pre-
conditioner of the stiffness matrix A in (1.5).

4. Numerical Results

The standard uniform mesh and bi-quadratic and tri-quadratic spline
finite element discretization are used for solving 2-D and 3-D biharmonic
equation, respectively. The domain Q in the following computation is
considered to be decomposed into two cubes with the same or different
size. In all CG iteration procedures the stopping criterion is used when
the (roe)lative 2-norm of the residual fall below 10~°. The initial guess used
is 2\ = 0.

Table 4.1 lists iteration number of CG and PCG required on the
interface with two same cubes [0,1)®, where h is the mesh size, N is the
total number of unknowns. PCG1 and PCG2 are the preconditioner (2.2)
combining (2.3) or (2.4), respectively. The numbers in round brackets
record the speedup of PCG CPU time with respect to CG iteration on
transputer T800/25. More detailed iteration record for PCG2 which is



FOURTH ORDER PROBLEMS IN 3-D 77

acsses to Theorem 1 is in Table 4.2. The iteration number tends a constant
as the mesh size is getting smaller and smaller. The domain in Table 4.3 is
so-called 3-D T-shape region. The bigger subdomain is [0, 1], the smaller
is [0.25,0.75]%. It shows the interface PCG still works well even for 3-D
T-shape domain.

In each subdomain we use multilevel B-spline described in section 3.
Table 4.4 and 4.5 record the iteration number and CPU time for a given
step size h. We observe that the iteration counts is at worst linearly
dependent on O(log(Z)) for the model problem.

Table 4.1. Interface CG and PCG Comparision in 3-D
Two Cubic Domain:Iteration count (CPU Speedup)

Method 1/h | 8 16 32 64
N 1024 8192 64K 512K
CG 6 18 64 (1.00)
PCGI1 6 10 13 (4.05)
PCG2 5 9 10(5.50) 12

Table 4.2. Interface PCG for 3-D biharmonic equation
Cubic domain: Iteration count

1/h 12 16 24 32 48 64
N 3456 8192 27K 64K 221K 512K
PCG2 8 9 10 10 11 12

Table 4.3. Interface CG and PCG comparision
3-D biharmonic equation over T-Shape Domain
Tteration count (CPU Speedup)

Method | 1/h= 6 8 16
CG 7 13 49 ( 1.00)
PCG 7 11 14 (3.60 )

Table 4.4. Multilevel B-spline PCG for 3-D
Tteration count versus h and J(number of level)

1/h 8 16 32 64
8§ 29 112 436

7 16 36 125

14 21 42

20 27

WP O~
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Table 4.5 Multilevel B-spline PCG for 3-D
CPU Speedup on Transputer T800/25

J[1/h 8 16 32 64
¢ 1.00 1.00 1.00 1.00
1 1.00 164 272 3.02
2 1.74 430 8.26
3 420 11.81
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