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Finite Volume Variational Formulation.
Application to Domain Decomposition Methods.

J-M. THOMAS, D. TRUJILLO

ABsTRACT. The finite volume element method for diffusion equations is a dis-
cretization technique for partial differential equations formulated in divergence form.
With this presentation, the convergence proof use some tools which are well known for
the study of the finite difference methods. The generalization to complex geometry
lead to some difficulties and the proposed analysis seems to be artful but not natural.
We give here a new formulation of the finite volume element method as a particular
case of a generalized mixed formulation with two fields but four distinct vector spaces:
the trial fonctions are in a finite dimensional subspace of H(div) x H' while the test
functions are in a finite dimensional subspace of (Lz)" x L2
So the approximation solution by this method will be an internal approximation of
the solution (p,u) in H(div) x H'. Note that the (standard = dual) mixed method
gives an approximate solution in H(div) x L2 while the primal mixed method gives
an approximate solution in (L?)™ x H*'.

For such a variational formulation we have three Babuska-Brezzi conditions to verify
for obtaining the existence-uniqueness results and then the a priori error bounds.
Examples of choices of the four finite dimensional vector spaces which satisfy the three

inf-sup conditions will be given.
Then in this framework of the finite volume method, we develop some domain
decomposition algorithms and we analyse them.

1. Presentation of finite volume methods

Let us begin first by presenting finite volume methods. Consider the homogenous
Dirichlet problem:

1 —div(Kgradu) = f in Q
1) u=0 on 0%

with K positive, f € L*(Q?) and © an open bounded polygonal domain of R?,
whose boundary will be denoted by 9.
The finite volume formulation consists to find u € H}(Q) with div(Kgradu) €

L?(Q) such that
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Yw C Q, —/ div(K gradu)dz = / fdz .
This can also be written as:

(2) Yw C Q, —/ Kgradun,dz = /fdx
dw

w

where n,, is the unit outward normal vector on the boundary dw of w: gradu.n, =
(,gl—"u is the outward normal derivative.

The equation (2) is now discretized using a finite difference method, with one
unknow by cell (or “finite volumne”).

Example in a 2 dimensional case on a structured mesh:

Rectangular case:(5 pts scheme) Quadrangular case: (9 pts scheme)

h; 1l
Ui jout Ay Uit1)]
Vit i,
On ;14 ;, we take:
Ou Usp1 5 — Uz ; du U g5 — UuF;
5 pts scheme: =— o~ —XtLIT 83 . 9 pig scheme: —— ~ —dml b
on hiy1 on hipa s
Z+2 1+3:]

(u}"j is in this example a linear interpolation of u; ; and w; j41.)
Convergence is not proved in general case (cf Faille [1]).

2. Finite volume methods analysis using a mixed formulation

The problem (1) can be rewritten as,

p = Kgradu in §
divp + f =0 in Q
u = 0 on 09

We recall in the following the two classical mixed formulations of problem (1)
(cf Roberts and Thomas [4]).
2.1. Primal mixed formulation.

find (p,u) € (L“’(Q))2 x HY(Q) solution of
Vg € (LQ(Q)‘)Q, Jo®pade — [,gradugdz = 0
Yv € H} (), Jagradvpde = [, fv dz
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2.2. Dual mixed formulation.

find  (p,u) € H(div, Q) x L*(Q) solution of
Vg € H(div,Q), Jo #padz + Jqudivg dz = 0
Yv € L3(Q), ﬁvdivp de = — [, fvde

2.3. A new mixed formulation. This new formulation can be seen as a
primal-dual method. We write the problem (1) in the weak form

find p€ H(div,Q2), ue HiQ) solution of

(3) Yq € (L3(Q))?, fn(%p —gradu).qdz =0

Yv € L2(Q), Jovdivp dz = - Jqfvds
It is easy to prove that there exists a unique solution of (3).
Let be .

= —p.gd
a(p, q) /ﬂ Pqdz

and

bi(p,v) = /vdivp dz , by(q,u) = —/ g.gradu dz .
Q o]
In order to have a more general framework, we introduce the next notations:
Wi = H(div,Q), Wa = (L*(Q))?, My = L}(Q), My = HLQ).

||-Ilw; and [].]|az; (i = 1,2) will denote the natural norm of these Hilbert spaces.
Let us now assurne that Wip, Way,, M1y and My, are finite dimensional spaces.

Win C H(div,Q), Wan C (LZ(Q))Z, My, C L2(Q), Ms, C H&(Q)

We study the finite dimensional problem:

find pn € Wiy, up € Moy, solution of
(4) Yqn € Way, a(pr,qr) + balqn,un) =0
Vo € Myp, bi(pn,vn) = — [ fon dz .

Let be
Vin = {pn € Wan; Yo € M, bu(pa,va) = 0}

Vo = { qn € Wap; Yup € Map, ba(gn,us) = 0}

The next theorem (cf Nicolaides [3]) guarantees the existence and the unicity of
the solution of (4).

Theorem 1 : Assume that the next three Babuska-Brezzi conditions are veri-

fied:

inf sup bi(pn,vn) > 8 >0
vw€Mun pr€Wun ||ppllw, |loallar, =

inf sup ba(qn, un) > 3 >0
un€Man an€War ||gallwollunlla, = 77

inf sup a(pn,qn) >a >0

Pr€Vin  an€Var ||paliw, llgallw,

and moreover, dim(Wip) + dim(Ma,) = dim(Wap) + dim(Myy). Then the
problem (4) has a unique solution (pj,up).
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We now add to this theorem a result of error estimates for approximate solution.

Theorem 2 : Let (p,u) be the solution of (3) and (pr,un) be the solution of
(4), under assumptions of Theorem 1 with o, B1 and Bz independent of h, we
have

lo=pullw, + lbs—uwnllss < C{_int llp=rallw, +  inf llu—wallar, )

where C is a postlive constant independent of h.
3. Example in a rectangular case

In this section, we would like to present an example of discretization spaces
which satisfy the conditions of Theorem (1) and Theorem (2). We define

Wi = {pn € H(div,Q), VK (centered oni,j) pn/k € RT1 } (see figure 1)

ag+ a1z
bo -+ b1y

Let E{L) be the space of the vectorial functions defined on L constant and
proportional to e. (see figure 2)

where RT) is the space of the vectorial functions of the form (

Wan = {qn €(L%(Q))?, VL (centered on i+ H

. .1
5 oronz,]—|—§) qn/z € E(L) }

Min = {w € L*(Q); VK centered on (i,§) va/x € Py} (see figure 1)
Moy = {un € HYQ); VT up/p € P } (see figure 3)

i
I Yij+ Uit1,j+1
.. L. € . -
~ *ij —> ij 141 Ui o

K I

! Ujj#= = mmmm s Uiy,
fig. 1 fig. 2
def 1
Uiplj+l = Z(ui’j t o Uigr; F Uit + Ui 1)

We remal"k that dim(Win) = dim(Wy) and dim(Myz) = dim(Msp). With
these choices of spaces, the assumptions of Theorem (1) and Theorem (2) hold.

4. Application to domain decomposition methods

\:V.e will see here, how we can adapt domain decomposition methods to this new
mixed formulation.

In the sequel, for the sake of simplicity, we shall assume that Q is a rectangle.
4.1. Overlapping methods. Let Q be an open rectangular domain of R?,
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whose boundary will be denoted by 8%, and partitionned into two subdomains
€, and Qo which satisfy:

910922912#@ , QIUQ2=Q
Q. We note

A
Y

Q1 =Q/Q, Qo2 =Q/Q ,
Iy Q43 Qi Qa2 Ty Ty =00 000,
Yo =02 NI,
- 2 = T1 = 89 NOQ
O i T =80, NOQ .

Let Wi(S%), Wan($4), M1n(€) and Man(€;) be the spaces introduced in Sec-
tion 3 but defined locally on Q; (i=1,2).

We solve the problem on Q by a Schwarz type algorithm which can here be
written as:

(p2 1wt € Win(1) x Man () solution of

Jo, EPFH an dz = [y grad(uy™).qude = 0V g € Wan()
(PZn—i-l) !

fﬂx vhdiwpi"+1 dz = _fﬂz fop dz YV vy € M1p(S21)

pirtly =pitw on %

( (10,21"""2 uin"‘z) € Win(1) x Man(£22) solution of

Jo, 202" qn de — [, grad(ui™*?).gnde = 0V gn € Wan(S22)

(P2n+2) 2 2
h ,

fn2 vpdivp;*t? dz = _fng fop, dz YV vp € M1p(2)

pntly = pittly on X
Theorem 3 : Let ( pn,up ) be the solution of the discrete problem (4). The
sequences ( pi™ )n and ( pi"“ )n converge respectively to pr/a, end prfa, in

H(div, Q) and H(div,Q1). The sequences (ui™), and (ulr1), converge respec-

tively to up/q, and up/a, HY(Q2) and H(Q1). Moreover the convergences
are geometric.

4.2. Nonoverlapping method. Let  be an open rectangular domain of
R? partitionned into two subdomains and §25 which satisfy:

Ql n Qg = @ and Ql U Qg = Q
R r, Wenote X =09Q1N0dy,
Ty = 00 NOQ, T2 = 02 NN

g
i

Pl Ql

Let Win($4), Wan(Q:), M1 (£2:) and M2, () be the spaces introduced in Sec-
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tion 3 but defined locally on €; (i=1,2). Let ®15 = {vx/s; vn € Mop(§21)}.
We use here an iterative algorithm with interface relaxation (cf Marini and Quar-
teroni [2]). The procedure can be written as:

Let ’\‘l)h € ®yp,

(P uint) € Win (1) x Man(Q4) solution of

fm Lpitly dz — fﬂl gradu?it g1 de = 0 V ¢1 € Wan(€1)

Grant

Jo, vidivplit do = ~ [0 fivy da V v € Min(1)
L u%’,f“ = An on %
(P§Z+2’“§Z+2) € Win(S2) x Moy (§2s) solution of
- Jo, P a2 de — [ gradult g, dz = 0V g € Wan(Q2)
n
P fnz vadivpiit? dz = ‘f% favy dz YV vy € M1(22)
@3 y) = (i) on I

M = 0D+ (1- 0
We conclude this paper with the following convergence theorem.

Theorem 4 : There ezists a positive constant §* such that, for all 8 in ]0, 6%,
the sequence (uf’,:"‘l,ugz+2,pfz+l,])§z+2)n converges geomeirically in H(Q;) x

HY(Qa) x H(div, ) x H(div,Q3) to the solution of the discrete problem on Q.

Numerical results are presented in Trujillo [5].
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