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Some Two-grid Finite Element Methods

JINCHAO XU

ABSTRACT. This paper is concerned with a class of finite element dis-
cretization techniques based on two finite element subspaces, one on a
coarse grid and one on a fine grid. On the fine space, only one symmetric
positive definite equation needs to be solved for a nonsymmetric or indef-
inite linear equation, and only one linear equation needs to be solved for
a nonlinear equation. It is shown that the coarse grid can be extremely
coarse to still achieve the optimal approximation on the fine space for these
algorithms. A special nonlinear Galerkin method based on two-grid finite
elements is also discussed for time-dependent problem.

1. Introduction. A class of finite element discretization techniques based on
two different grids has been developed by the author recently. This type of algo-
rithms was explored in [4, 7] for solving nonsymmetric and indefinite linear finite
element algebraic systems and the idea was applied in [6] on the discretization
level for nonsymmetric and indefinite linear problems and especially for nonlinear
problems. In [8], an innovative technique was devised based on a further coarse
grid correction to improve the performance of the algorithm without introducing
much extra work. A new nonlinear Galerkin method was proposed in a recent
work [2] by Marion and Xu based on two-grid finite element discretizations. This
paper is to give a brief summary on these algorithms and some remarks on their
applications with multigrid and domain decomposition methods.

Given a bounded domain Q C R? (1 < d < 3). We assume that 2 is convex
with piecewise smooth boundary and that W, is the standard Sobolev space

defined on Q with a norm || - [lmp given by [[o[l5, , = 35 jaj<m 1D*0n(q)- For
p =2, we denote H™ = WJ* and H} = {v € H* : v|sn = 0}, where v|gq = 0 is
in the sense of trace, || flm = || - lm2 and |- | = [ flo2-
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Throughout this paper, we shall use the letters C' and ¢ (with or without
subscripts) to denote a generic positive constant which may stand for different
values at its different appearances. When it is not important to keep track of
these constants, we shall conceal the letter C or ¢ into the notation < or 2. Here
z Sy means z < Cy and x 2 y means = > cy.

We assume that ) is partitioned by two quasi-uniform triangulations T and
T}, with two different mesh sizes H and h (H > h). We assume that Vi and V3,
are two subspaces of H} that consist of piecewise linear functions with respect
to Ty and T}, respectively. We shall call Vi to be a coarse space and V3, a fine
space. ‘

Assume that up € Vj, is the standard finite element approximation to the
exact solution of certain second order partial differential equation. In general,
the best possible error estimate is

v = unlls < b

A two-grid finite element method is to produce an approximation u* € V}, based
on both Vi and V}, so that the following type of error estimates hold

up —w|s S H™

where m > 2. As a result, it suffices to take H = O(h'/™) to achieve the optimal
approximation. The point is that more difficult equations are solved only on Vi

and easier equations are solved on V;,. As dim Vi <« dimV}, the efficiency of
these algorithms is then evident.

2. Two-grid methods for linear problems. In this section, we shall
discuss two-grid finite element discretizations for nonsymmetric and/or indefinite
linear partial differential equations. Our motivation is based on the fact that a
symmetric positive definite (SPD in short) system is in general much easier to
solve (e.g. conjugate gradient like methods can be applied effectively) than s
non-SPD system. The detailed analysis of these algorithms can be found in [6].

Let o, E, 7 (with the ranges in R2%2 R? and R2 respectively) be smooth func-
tions on {2 satisfying (for some positive constant ap)

tTa(z)e > alé? V ze Q,¢ e R2
Consider the following boundary value problem
L v = ~div(a(z)Vv) + B(z) - Vv + Y(z)v=f(z), €9, wulsgn=0.

Our basic assumption is that £ is nonsingular (a simple sufficient condition is
7(z) 20.)

We define two bilinear forms, for u,v € H§, as follows

Alu.v) = /a(r)Vquv de,  Alu, v) = A(u,v) +/((ﬂ(x)-vu)v—|—'y(x)uv) dz.
Q s
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The standard finite element approximation of (2.1) is to find up € V4, so that

Alun,x) = (f,x) ¥ X € Vi

It is well-know that the above equation is uniquely solvable if h is sufficiently
small and

llu = un| + hllu — unlly S K|full2-
The idea in the algorithms presented below is to reduce a non-SPD problem
into a SPD problem by solving a non-SPD problem on a much smaller space.
Denoting the bilinear form of the lower order terms of the operator L by

N(v,x) = (A= 4)(v,x) = (8- Vo, %) + (70, %),
our first two-grid algorithm is

Algorithm 2.1.

2. uh e Vi, A, x)+N(ug,x)=(f,x) ¥V x€EVa

We note that the linear system in step 2 of the above algorithm is SPD. The
error estimates for the above algorithm are

lfun, — ™l S H?|lull2-

Algorithm 2.1 can be applied in a successive fashion.
Algorithm 2.2. Let u) = 0; assume that uf € Vj, has been obtained, u;‘;“ €
V. is defined as follows

l.egeVy, Aleg+ul,o)=(f¢) V peVu:

2. uheVy, AT x)+ Nk +em.x) =(Ffix) YV xE€V

_The error estimate of the above algorithm is
up — uflle S H  ulle, k21

The SPD system in the second step of Algorithm 2.2 need not be solved
exactly. The resultant algorithms correspond to those in [4,7].

3. Nonlinear problems. In this section, we shall present some two-grid
methods for nonlinear equations. The detailed analysis of these algorithms can

be found in [6].
3.1 Model problem and finite element discretization. We consider the following

second order quasi-linear elliptic problem:
(3.1) L(u) = —div(F(z,u. V) + g(z.u. Vi) =0 in Q2. uloe =0.

We assume that F(z,y, z) : xR xR? — R? and g(r.9.2) : OxR! %RQ — R!
are smooth functions and that (3.1) has a solution u € H§ N H** (for some
g>0).
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For any w € WL, we denote
a(w) = D, F(z,w, Vw) € R**?,  b(w) = D, F(z,w, Vw) € R?,
c(w) = D g(z,w, Vw) € R?, d(w) = Dyg(z,w, Vw) € R™.
The linearized operator £ at w (namely the Frécht derivative of £ at w) is then
given by
Lyv = —div(a(w) Vv + b(w)v) + c(w) Vv + d(w)v.
Our basic assumptions are, first of all, £, is nonsingular and for the solution
u of (3.1)
la(u)e > al€]? V E€R?, el
For convenience of exposition, we introduce two parameters & and 65 as

follows.
6o = )
1 otherwise;
and
5 { 0 if 6 =0, DyD,F(z,y,2) =0, D,D,g(z,y,2) =0,
' 1 otherwise.

If 6o =0 and 6; = 1, (3.1) is mildly nonlinear for which
L(u) = —div(a(z,u)Vu + 8(z,u)) + v(z,u) - Vu + g(z, u);

if ) = 62 = 0, (3.1) is semilinear for which

(3.2) L(v) = —div(a(z)Vu + B(z,u)) + g(z, u).

The classic finite element approximation of (3.1) is to find up, € V4, such that
(3.3) Alun,x) =0 Y x €V, '
where

A(’U, 90) = (F('7U7 VU), V(P) + (g(~ v, VU): 170)
It can be proven that (cf. [6] and the references cited therein) that, for suffi-
ciently small h, the equation (3.3) has a (locally unique) solution w;, satisfying

Hu——uhllg,p%-hl]u—uhnljp,Shz if 2§p<oo,uEW§,
e~ unlloco Sh?logh| and Ju—upliee Sh if uwe W2,

~

The above estimates are important in the analysis for the algorithms described
in this section (cf. [6]). :

3.2. Simple two-grid methods. The technique presented here is similar to that
for algorithms for non-SPD linear problems in section 2. We first define, for
u.v,x € WL

Awsv,x) = (@l w) Vo + B(, ), Vi) + (v(, ) - Vo + g, 1), x)-

Our first algorithm is a nonlinear extension of Algorithm 2.1.
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Algorithm 3.1.
1. ug €Vy, A(ug,0)=0 V pcVy;

2. uh eV, A(ug;ut,x)=0 VY x eV
The error estimates of the above algorithm are
lup — s S H? if we N2,
flun — w100 S H?|logh| if we W2,
"The following algorithm is obtained by combining Algorithm 2.1 with Algo-
rithm 3.1 and it reduces a nonlinear problem to a SPD linear problem and a

nonlinear system of smaller size.
Define

As (u§ v, X) = (a(-,u)Vv, VX)’
N(u;v,x) = (B0 u), Vx) + (v(w) - Vo + g(-, u), x).
Algorithm 3.2.

1. ung € Vi, Alum,p)=0 V peVy; :
2. uh ey, As(um;ut,x) + N{ug;upg,x) =0 V x €W
Note that the system in step 2 of the above algorithm is SPD. The error
estimates for the above algorithm are
flun —uly S H? if weH?,
llur — w100 S H?|logh| if ue W2,

8.8 Correction by one Newton’s iteration on the fine space. The essence of
these methods is like the well-known Newton's method for nonlinear systems.

Algorithm 3.3.
1. ug €Vy, Alug,p)=0 V pe Vg,
2. uh € Vh; Auy(uth) = AuH(quX) "A(uHaX) v X € V.

Here
Au(v,9) = (Ly, $) = (a(w) Vo + b(w)v, V) + (c(w) Vo + d(w)e, ).
The error estimates for the above algorithm are
llun —uPly S HY+ 8 H? +8H? if ueW;,
l[an, — uP||100 S (H*+ 6.H® + 82 H?)|logh| if ue W5

(The above second estimate for 63 # 0 may also be deduced from Rannacher

3): |
If the Algorithm 3.3 is applied to the semi-linear equation (3.2). then

(3'4) h 4 s . y2
lup, —u?)y S H* if weW? fup— "1 S Hlogh| if ueWX.

3.4. Correction by two Newton’s iterations on the fine space. The algor.ithn%s
presented above can be greatly improved if one further Newton's iteration is

carried out on V},.
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Corresponding to Algorithm 3.2, we have

Algorithm 3.4.

1. ug € Vg, Alug,p)=0 V o€ Vu;

2. vt eV, Alug;ul,x) =0 ¥V x € Vi;

8 ul €V, Apn(ui,x)= Agr (U, x) — AuP, x) ¥V x € Vi

Corresponding to Algorithm 3.3, we have

Algorithm 3.5.
1. ug € Vg, A(uH,Lp)z() Y QDEVH,‘
2. ub Vi, Aug(ul,x)=Aun(vm,x) — Alur,x) V X € Va;
8 uh €Vi, Apn(ul,x)= Ap(uP, x) — A(wh,x) YV x €V
For Algorithm 3.4,

lun = uflli,00 S H*|log h|?,

~

and for Algorithm 3.5
lun, — w100 S (HE + 61HS + 6. H*)| log h|>.

Again we notice that if Algorithm 3.5 is applied to the semi-linear equation
(3.2), then

lun — 4" l1,00 S H¥|logh)?, if we W2.

4. Further coarse grid correction. The section is to discuss a technique
devised in [8] that makes a further refinement in the aforementioned process by
solving one more linear equation on the coarse space. This additional correction
step (which needs very little extra work) improves the accuracy of the algorithms
in {6] up to one or two orders. The fact that a further coarse grid correction after

the fine grid correction can actually improve the accuracy appears to be of great
interests.

For clarity, we shall consider a simple semilinear equation
—Au+ f(a:, U) =0, =zef, u[ag =0.

Here the function f is sufficiently smooth. For simplicity, we shall drop the
dependence of variable z in f(z,u) in the following exposition. We assume that
the above equation has at least one solution u € H} N H?* and the linearized
operator L, = —A + f,(u) is nonsingular.

The main algorithm of this section is

Algorithm 4.1. Find u} =upy + ep + ey such that

1. ug € Vg, (Vug,Vé)+ (f(’lLH)(ﬁ) =0 V ¢€ Vg

2. en € Vi, auglen,x) = —(flum).x) — (Vug,Vx) V x € Vi,

3. en €V, auy(en,0) = —3(fuulun)e}.¢) V ¢ € Vy.

The new feature of the above algorithm lies in step 3 where a further coarse
grid correction is performed. We notice that the linearized operator used in
this step is based on the first coarse grid approximation uy (instead of the
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more accurate ug + ep). Such a correction indeed improves the accuary of the
approximation. In fact, if v € W%, then

lun —uilln S H?,  flun —uj| S HE.

Compared with the estimate (3.4), we notice that a further coarse grid correction
gives rise one order improvement for the 1! error (and two order improvement
for £? error).

For most practical purposes, the Algorithm 4.1 which involves only one New-
ton’s iteration on the fine grid may be sufficient for applications. Nevertheless
more dramatic result can be derived if one more Newton’s iteration is performed
on the fine grid.

Algorithm 4.2. Find @y = u} + e" such that
1. up € Vy, is obtained by Algorithm 4.1;
2. et eV, aui(eh,x) =—(f(up),x) — (Vu;,Vx) V x€V,.

If uw € W2, the error estimate for the above algorithm is
1
llun — (uh, +€™)lls S H'|loghlz.

It is also possible to make an additional coarse grid correction in Algorithm
4.2 to further improve the accuracy, but such an improvement may not be that
important since the order of H is already so high. We would also like to remark
that the technique presented in this section may be extended to the general
equation (3.1).

5. Nonlinear Galerkin methods for evolution problems. In this sec-
tion, we shall discuss two-grid methods for time dependent problems. In prin-
cipal, most of the aforementioned algorithms for stationary problems can be
carried over to time dependent problems. Instead of discussing such extensions
shall now discuss another type of two-grid method — the nonlinear Galerkin
method.

The nonlinear Galerkin method is a special class of numerical algorithms be-
ing developed for solving nonlinear time-dependent partial differential equation
motivated by inertial manifold theory (see Marion and Temam [1] and the refer-
ences cited therein). In a recent paper by Marion and Xu [2], we have proposed a
new nonlinear Galerkin method based on two-grid finite element discretizations.
We shall now briefly describe such a special two-grid method.

We consider the following model problem:

ug — Au+ f(z,u) =0

with the initial condition u(z,0) = ug(x) and boundary condition u|sq = 0.
An example of the standard Galerkin method for the above equation is to find
up, € V3, such that

(un,ts x) + (Vun, Vx) + (f(ur), ) =0 ¥ x € Vi, and  up(0) = Qnuo.
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where Qp, : H} — Vj, is the ordinary L2 projection.
Based on an intermediate space Vf = (I — Qu)V, the two-grid nonlinear
Galerkin method proposed in [2] is as follows

Algorithm 5.1. Find u? = uff +e), € Vi, where uf! € Vi and ey, € VH
satisfy the following coupled equations:

(ulf, ) + (V@ +er), Vo) + (F(u™ +en),¢) =0 V ¢ € Va,
(V@ +en), Vx) + (f(u"),x) =0 V x €V,
with initial condition u™ (-, t0) = (Qmun)(-, to) for some to > 0.

The above systems may be decoupled by choosing appropriate time discretiza-
tions. We note that on the fine grid, we need to solve a fixed stationary problem
and the nonlinearity and time-dependence are all treated on the coarse gird. A
rather attractive feature is that the stability of an explicit scheme for this cou-
pled system appear to only depend on the coarse mesh size in the usual fashion
(e.g. At < cH? for explicit Euler method).

The error estimate for the above nonlinear Galerkin method is ([2])

(5.1) lup — uP|s S H®, ¢ >to.

As no Newton’s type linearization is used in our algorithm, the above error
estimate is quite remarkable.

Algorithm 5.1 is the first nonlinear Galerkin method based on finite element
discretization that admits error estimates like (5.1).

6. Applications with multigrid and domain decomposition meth-
ods. These methods are among the most efficient algorithms for solving linear
algebraic systems and they can be naturally applied to the linear systems on the
fine space appearing in the algorithms discussed in this paper.

Most domain decomposition methods are, in certain sense, two-grid methods.
The set of subdomains in a domain decomposition gives rise to a natural coarse
grid and in fact it is well-known that certain solvers on such a coarse grid are
necessary to avoid the deterioration of the efficiency as the number of subdomains
increases. Hence the domain decomposition techniques fit perfectly well with
our algorithms and the coarse grid plays two different important roles in such
an application. Similar arguments also apply to multigrid methods. Suppose we
have a multiple subspaces Vo C Vi C --- C V; C H}. Naturally we can choose
Vi =V, (and V}, =V}, of course) in our two-grid algorithms.

Applications of multigrid and domain decomposition methods with our two-
grid methods for nonlinear problems are satisfactory from both theoretical and
practical point of views, since the systems on the fine grid are all linear and
hence theories and numerical codes for linear problems can be adopted with
little modification.

The linear systems on the fine space in Algorithms 2.1 and 2.2 are SPD and
their solution methods are well developed, we refer to [5] for a summary of these
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methods. The linear systems from the fine space on the algorithms in section 3
are mostly not SPD and may be solved by combining the algorithms in section
2. As a result, a nonlinear system on the fine space can be decomposed into few
SPD linear systems on the fine space together with some linear and nonlinear
systems on the coarse space.
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