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A y-Formulation of the
Viscous-Inviscid Domain Decomposition for the
Euler /Navier-Stokes Equations

RENZO ARINA AND CLAUDIO CANUTO

ABSTRACT. In this paper we present an application of the x-formulation for
the solution of the Navier-Stokes equations. Subsonic laminar and transonic
turbulent flows are calculated.

1. Introduction

Many flow phenomena, such as turbulent flows, involve a wide range of length
scales, for this reason their numerical simulation is a challenging problem. In
many situations, high accuracy is necessary only in limited parts of the domain,
one possibility is to resolve the physics on a global uniform grid with the smallest
desired mesh size. However this direct approach is far from being efficient. For
these reasons several physically motivated domain decomposition methods have
been proposed. In this paper, we present a domain decomposition method termed
x-formulation [3]. The key idea is to locally evaluate the magnitude of the
diffusive part of the Navier-Stokes equations, and by this inspection to detect
the smallest scales involved into the phenomenon under investigation. In this
way, we obtain an automatic detection of the shear layers (such as boundary
layers, wakes, etc...) where an highly accurate simulation is required, and a
natural splitting of the domain can be performed.

The x-formulation has already been successfully applied to a scalar model
problem [2], showing its ability in optimizing the interface position. In the
present paper, we present an application of this approach to the solution of the
compressible Navier-Stokes equations for two-dimensional subsonic and transonic
flows, in laminar and turbulent regimes.
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2. The y-Formulation for the Navier-Stokes Equations

Consider the incompletely parabolic problem

s + Bug +Cu = Augy , z€(0,L), t>0,
(2.1)

+ initial and boundary conditions ,

where u = (%), A = (§0) with v > 0, and B a symmetric matrix. The x-
formulation replaces problem (2.1) by a modified problem, in which the diffusive
term is deleted when it is negligible. To this end, let us choose a cut-off parameter
6 > 0, and a further parameter o > 0 such that 0 < §, and let us introduce the
monotone function ¥ =IR—IR defined as:

s if s>6,
x(s)=Q (s—6+0)b/o) if 6—0<s<L6,
22) 0 f0<s<é—0o ,

x(s) =—x(-s), s<0.

We define the x-formulation of problem (2.1), as the following modified problem

uy + Bug + Cu = Ax(uz:) , € (0,L), t>0,
(2.3)

+ initial and boundary conditions

where the viscous term Au,, = (0,vu3 ;)7 is replaced by the modified term
(0, vx(ug,zz))T, denoted by Ax(uszz). The linear ramp of size o in the function
x yields a continuous transition between the state x = 0 (the inviscid state) and
states | x | > & (the fully viscous region). This formulation leads to a smooth
behavior of the solution u of (2.3) at the viscous/inviscid interface.

In [3], it has been proved that the x-formulation leads to a well posed problem
for the scalar advection-diffusion problem, and that the maximun deviation of
u from the solution of (2.1) is proportional to v, providing an estimate for the
choice of the parameter § as a function of the diffusion parameter v. Moreover
it has been shown that u is continuously differentiable all over the domain, in
particular across the interface. This property is peculiar to the y-formulation.
Indeed any a priori choice of the viscous/inviscid interface leads only to C°
continuity. Further in [4] the same results have been proved for more general
boundary conditions, and in [5] the convergence of the iterative self-adaptive
domain decomposition has been investigated.

The y-formulation introduces a nonlinearity into the diffusive part of the
equations. However, if the original problem is already nonlinear, this added
nonlinearity can be treated explicitly as the other nonlinearities. In the case of
the viscous Burgers equation, it has been shown [2] that the x-Burgers equation
can be solved with a computational effort which is comparable with the cost of
solving the Burgers equation on the same domain. In [1], Achdou and Pironneau
have extended the y-formulation {o the incompressible Navier-Stokes equation,
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showing how the self-adaptive detection of the viscous subdomain greatly im-
prove the efficiency of the simulations.

In this work we present an extension of [3] to the compressible Navier-Stokes
equations, which for two-dimensional compressible flows, can be written in the
nondimensional form

0Q  OF  0G _ 1 (oF, 96,
ot Oz ' Oy Rel\ Oz Oy !

(2.4)

where Q = (p, pu, pv, E)",

pu pv
2 v
F=| TP G= /;u ,
puv pv°+p
(E +p)u (E+pw
are the convective fluxes, and the viscous fluxes are given by
0 0
T,
F'v - Taxx ) GU - Tz‘y
T:z:y 2 vy a2
UTig + UTay + 74757 ge WTay + VTyy + 5=07Pr By

Denoting by 7 the viscous stress tensor, the viscous terms in the momen-
tum equations can be written in the form divz. One way of extending the x-
formulation to the Navier-Stokes is to define a monotonic function of the viscous
terms as follows

(2.5) xum(divr) = an(||divzl) - divz

where, for a given § > 0 and ¢ > 0,

1 if [lsll =6,
(2.6) am(lsl) =9 Fllsl) i 6—o<llsl <6,
0 if s <é-0 ,

with f(||s||) any smooth monotonic function, with values between 0 .and 1~.
In the total energy equation, the scalar diffusive term can be written in the
form

(2.7) —divg + div(z - V) = —divg + gradV - T+ V- divr ,

with ¢ the heat conduction vector and V the velocity vector. Two distinct
dissipative mechanisms are present: the heat diffusion divg, and the part due to
the viscous stress tensor 7. The quantity V -divz is negligible if the viscous ter.ms
of the momentum equation divr are negligible. Therefore, the samfe fu.nctmn
X given in (2.5) can be applied to these terms. In the present application we
are interested in subsonic and transonic adiabatic flows along walls. For such
flows, the dissipation function gradV - T is always small with respect to the term
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V - divr. Moreover, in the case of air, the ratio between the thickness of the
thermal boundary layer and the thickness of the velocity boundary layer is of
order one. In this case, the function x s is also a good indicator of the magnitude
of the term divg. From these considerations we argue that for the applications
in which we are interested, the domain decompositon criterion can be based on
the x-function xas, and the x-formulation of problem (2.4) reads

F 8F, 08G,
(2.8) 6_Q 6_ .B_G = oM ( )

5t 9z "By~ Re

W_I_ oy
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F1GURE 1. Laminar subsonic flow, Re = 5.10%, Ee=it = 0,95,
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FIGURE 2. Turbulent transonic flow, Re = 2.3107, %ff =0.64.

In order to prove the previous statement, we have solved the Navier Stokes
equations (2.4), in the case of a channel flow. And then we have made an a
posteriori evaluation of the function as. In Figure 1, we have the behavior of the
function oy in the case of a laminar subsonic flow in a channel, with Re = 5. 10,
and inflow Mach = 0.25. The gray region is formed by the points where ap; = 1.
Similarly in Figure 2, for the turbulent transonic flow (Re = 2.3107, and inflow
Mach = 0.65). In both cases, § = 1 and ¢ = §/100. From the figures it
may be observed that the boundary layer region is well detected, as well as
the laminar separation bubble developing behind the bump. In the transonic
case, we have a very thin turbulent boundary layer, and a complex shock wave

structure, creating downstream a region with vorticity. All these features are
detected by the y-function.

3. Domain Decomposition via the y Formulation

The previous calculation can be performed by splitting the domain into two
parts. A viscous region along the wall, where problem (2.8) is solved, and an
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inviscid region, formed by the rest of the domain, from the interface to the upper
boundary, along the channel symmetry line. In the inviscid region we solve the
Euler equations, that is system (2.4) with F, = G, = 0.

The interface between the two regions is placed in such a way that the resulting
viscous region contains the points where the function oy # 0, in addition ays =
0 on the grid points belonging to the interface itself. This last requirement
along the interface, is very important in order to have a coupling between the
Euler equations and the x-Navier-Stokes equations, of inviscid type (that is
Euler-Euler coupling). In this way it is possible to specify boundary conditions
consistent with the hyperbolic character of the equations on both sides. By a
one-dimensional analysis along the normal to the interface, it is possible to see
that for the Euler equations we have to impose the velocity component along
the normal and, if there is an incoming flow with respect to the inviscid region,
the total enthalpy and the entropy. For the y-Navier-Stokes equations, we have
to specify the pressure and, if the flow is incoming with respect to the viscous
subdomain, the total enthalpy and the entropy. We can see that the external
inviscid flow is driving the development of the viscous region, by imposing the
pressure distribution. And the viscous region interacts with the external inviscid
flow by introducing displacement effects. This kind of interaction is well known
from the classical boundary layer theory. However, in the present approach we
do not introduce any kind of approximation, and the interaction between the
two fields is much more general.

The Euler equations, and the y-Navier-Stokes equations, are solved by a
finite~volume method in curvilinear coordinates. The convective terms of the
Euler equations are discretized in space by a second order flux vector splitting
technique, while for the y-Navier-Stokes equations a centred scheme is applied.
Upwind methods, such as the flux-vector splitting, are very well suited for rep-
resenting shock waves, but they are excessively dissipative inside the boundary
layers. On the contrary, centred schemes give better results inside the viscous
layers, but they present problems when capturing shock waves. With the pres?nt
approach we try to combine the good properties of the two schemes, avcid}ng
their drawbacks. The governing equations are integrated in time by an implicit
technique.

After o first calculation of the Navier-Stokes equations, on the whole domain
with a coarse grid, we detect the viscous region and we locate the imerfax':e fol-
lowing the requirements explained above. Introducing a fine grid in the viscous
subdomain, the Euler equations and the x-Navier-Stokes equations are alterna-
tively integrated in time in each subdomain. After a step in one su%)domam,
the appropriate characteristic boundary conditions are imposed at the mterfaf:e,
and the other subdomain is calculated. During the coupled calculatio.n, the i
terface is displaced if the above requirements are not fullfilled, that ist if t;he size
of the viscous region was underestimated. Similarly if the viscous region s over-
estimated, the interface is displaced, in order to optimize the calculation effort.
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Complete details on the numerical algorithm, its efficiency, as well as further
results, will be presented in a forthcoming paper.
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FIGURE 3. Laminar subsonic flow, Re = 5.10°, Bestt = (.95,
Inviscid subdomain.

0.00 g %

-0.10 0.10 0.30 0.50 0.70

FIGURE 4. Laminar subsonic flow, Re = 5.10°, Pesit = (.95,
Viscous subdomain.

In Figure 3 and 4, we report the calculation of the laminar subsonic channel
flow. Constant mass-flow lines are reported for the inviscid part of the domain
(Figure 3) and the viscous subdomain (Figure 4). The interface was placed
along a curvilinear coordinate line, and the mesh size was 11 x 41 points in
the inviscid part, and 31 x 81 in the viscous subdomain. The accuracy of the
solution oobtained by domain decomposition, is comparable with a solution of
the Navier-Stokes equations, with a global grid of size 101 x 81.
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