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Preconditioning Via Asymptotically-defined
Domain Decomposition

S.F. Ashby, C.T. Kelley, P.E. Saylor, and J.S. Scroggs

ABSTRACT. Asymptotic analysis is used to derive preconditioners based
on operator splitting and domain decomposition for the numerical so-
lution of the advection-diffusion equation. Specifically, asymptotics is
used to identify subdomains in which the solution is dominated by a
certain operator, and this information is used to construct an effective
preconditioner. We analyze the one-dimensional case in a function space
setting and present numerical results for both one and two dimensions.

1. Introduction

In this paper, we construct and apply a preconditioning technique for
the matrices arising in the numerical solution of differential equations. The
preconditioning strategy is based on asymptotic analysis and uses the in-
teraction of solution phenomena with the differential operator to create an
approximate inverse that depends on both the operator and on the right
hand side. This preconditioning differs from the usual approach that con-
siders only the discrete or differential operator, and not how that operator
interacts with the solution. Our preconditioning strategy is based on de-
composing the computational domain in such a way that each subdomain
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isolates a fundamentally different type of physical behavior. We then as-
sociate a simple “partial” operator with each subdomain, the choice being
made according to the dominant physics within that subdomain. To identify
these partial operators, we use a uniform asymptotic expansion. The partial
operators are then discretized and combined to obtain a preconditioner for
use in an iterative method.

Our goal is to approximate the solution of a singular-perturbation prob-
lem governed by a differential operator where the singular behavior of the
solution is governed by a small (but non-zero) parameter. Toward this end,
we discretize the operator so that exact solution to the discrete problem has
an error no larger than some specified tolerance. We then obtain an approx-
imate solution to the discrete problem to within the same tolerance. We use
asymptotic analysis to define a preconditioner for accelerating convergence
of an iterative method that is applied to the original problem. We remark
that the idea of using a uniform asymptotic expansion to precondition the
problem was first proposed by Chin, Hedstrom, and Howes [9]. This idea has
been applied to canonical problems in fluid flows [10, 12, 6] and isentropic
gas dynamics [4].

2. Model Problem

Our target application is the numerical simulation of fluid flow. In certain
high-speed regimes, shock layers or boundary layers can arise, and the flow
is governed by the compressible viscous gas dynamics equation,

V-F(u) -V -G(V xu)=0,

with appropriate boundary conditions. The components of the vector u
represent density, velocity, and energy, F is the flux, and G is the stress. In
this paper we consider problems in which the “ratio” of V- F(u) to V-G(V x
u) changes throughout the computational domain. For our purposes, it is
sufficient to study a canonical problem whose solution is smooth except for
the presence of a boundary layer. We will develop the technique for the linear
one-dimensional singularly-perturbed advection-diffusion equation, and then
demonstrate the effectiveness of the preconditioner on examples in one and
two dimensions. Specifically, we will consider

M (Le — eLa)lu] = f
on the domain 2 = [0, 1], with homogeneous Dirichlet boundary conditions
(2) #(0) =0, wu(l)=0.

Here tlhe operators L. = V and Ly = A represent the effects of advection
and diffusion, respectively. We are interested in solutions to this problem
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when 1 >> € > 0 is small, which gives rise to a boundary layer. The forcing
function f(x) may depend on ¢, but we assume that f and its derivatives
of all orders are bounded independently of €. The analysis of this simple
problem will illustrate the fundamental ideas.

3. Quantitative Analysis
The solution to (1-2) may be decomposed into two components, u ="
Unuit +uf. One component, u¢, has derivatives bounded independent of ¢ for
the entire domain, and the other component, ,,,;;, has derivatives bounded
independently of € except for a region that we can locate. Component us
satisfies the non-homogeneous equation

(3) (Le — eLg)ug] = f

with boundary conditions that yield a regular perturbation problem. The
singular nature of the solution is captured in u,,;, which satisfies

(Lc - 6Ld)[unull] =0.

Thus, v,y is in the null space of the operator, and it is chosen so that the
SUM Upyy + uy satisfies (2). In general, uy,y is nonzero. More specifically,
let -
(4) us(z) = F(z)+ > (f"(2) - f9(0))

n=1
where F(z) = i f(y)dy. This is a regular asymptotic expansion for uy that
satisfies the differential Eqn. (3). For example, using expansion (4) for uy,
we find o
(5) u’null(w) - KOET + Kl + 0(6)
where the constants Ky and K; are determined by applying the boundary

conditions .
KoeTs +K; =0 and Kyp+ K; = —F(1).

4. Qualitative Analysis

In this section, the qualitative behavior of the solution is obtained by
deriving a uniform asymptotic expansion. The expansion is not new [7], but
is repeated here as motivation for our preconditioner.

Consider Eqn. (1), and let

(6) ug;lter(t, z, 6) = Uo(t, ;1,') + eUl(t, 37) + 62U2(t, l‘) + -

be the regular asymptotic expansion of v in the (outer) region of smooth
behavior Quyzer = [0,7], for some 7 yet to be determined. Since € is small,

the dominant behavior is given by U, which satisfies

) LfU] = 0.
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In other words, the operator in (1) is advection dominated in this subdomain.
Next let

(8) w4,z €) = do(t, x) + elg (¢, x) + 2ha(t, ) + - - -

be the asymptotic expansion for the solution in the (inner) boundary layer
region Qipner = (7,1] . Here the behavior is given by g, which satisfies

(9) (Lc — €Lg)[@] = 0.

Thus, in the boundary layer region, the solution is neither advection nor
diffusion dominated. By applying appropriate conditions at the interface
between the subdomains (i.e., Up(T) = Go(7)), the first term in the uniform
asymptotic expansion for the solution to our model problem is

w o uniform __ UO(-'L'); T e Qouter
(10) u(z,y) = ug = { fio(z), z € Qinner

We discuss how to choose 7 in §6.

5. Preconditioning

In this section, we describe how asymptotics can be used to define a
preconditioner for our problem. The goal is to find an operator M such that
the problem

(11) M YL, —eLg)[u) = M7}

is easier to solve than the original problem. It would be natural to choose
the preconditioner

(12) M = (Aouter ) Xjo,r) + (Ainner)x =1

based on the portions of the operator that are dominant in the various
subdomains. Here, x; denotes the characteristic function of the interval I.
Next, we define each of the operators on the right-hand-side of (12).

Preconditioner in the Outer Region. In the outer region, the action
of L. dominates the differential operator, hence we define V = A,y e [v] to
be the solution of

L;V] =v, subjectto V(0)=0.

This preconditioner is applied to the equation (L. —€eLg)[v] = f for x € Qouser
to obtain

v(z) — e’ (z) — (v(0) — €' (0)) = F(x).

Preconditioner in the Boundary Layer Region. In the boundary
layer, neither the action of L. nor the action of ¢L,; dominates the differential
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operator, and so the full operator needs to be used in this (smaller) region.
The boundary condition at z = 7 is provided by the preconditioner A,yier.
To summarize, the preconditioner for the boundary layer region Ajpper|v] is
defined as the solution V' of

(LC - eLd)[V] =v

subject to V(1) = Aputer[v' — e”](r) and V(1) =0.

Note that Ayyser must be applied before A;,ner. We apply this preconditioner
to both sides of the equation (L. — €Lg)[v] = f for € Qinner to obtain
v(z) — p(x) = F(x), where F = Aipner[f], and p is an element of the null
space of (L. — eLg) that satisfies the boundary conditions imposed by our
preconditioner, namely, v(1) +u(1) = 0 and v(7) +u(7) = Aouter[v' —ev”}(7).

Preconditioned Problem. After applying the preconditioner on each
subdomain, Eqn. (11) becomes

Aguter [U]X [0, 7—] + Ainner [u]X [T7 1] =G

where G(z) = [F(z)] x[0, 7] + [ﬁ’(z)} x[7,1]. Since the family of functions

,]161—2—1 + Jo is in the null space of (L, — €Lg4), the above equation may be
written

u(z) +¢€ ([’u’(O) — u/(z)] x[0, 7]

xz—1
e —1
(13) + [(U,(O) — /(7)) (‘ﬁj)] x[r, 1]) = G(x).
e —
Using the homogeneous Dirichlet boundary conditions, we write our pre-
conditioned problem more generally as: Find a constant o and a function
u(x) such that

[u(z) — ev(z) + ea] x[0, 7] + [u(z) + p()] xIr, 1] = G(z)

where u satisfies the boundary conditions u(0) = 0 and u(1) = 0. Notice
that this is a first-order equation for u with two boundary conditions. The
parameter o reflects the use of (the inverse of) a first-order operator to
precondition a second-order problem.

6. Analysis of the Iterative Method

In this section, we analyze the convergence of the Richardson and GM-
RES iterative methods in a function space setting. This analysis makes clear
the dependence of the L convergence properties on bounds for high deriva-
tives of the solution in a way that an analysis of a discretized problem could



144 S. F. ASHBY, C. T. KELLEY, P. E. SAYLOR, AND J. S. SCROGGS

not. We emphasize that this analysis has not been extended to the discrete
case, but we present supporting numerical evidence in the next two sections.
Let A = L.—eL4 and apply homogeneous Dirichlet boundary conditions
on [0,1]. We will solve Au = f via the GMRES method [11] using M as
a left preconditioner. Let the functions {vg(x)} be the GMRES iterates.
Denote the error by ex(z) = u(x) — vg(x). In the L? norm we have [11, §]

(14) llexlle = || Popt (M~ A)[eo] |2,

where P,y is a k' degree residual polynomial, that is, P,p:(0) = 1. GMRES
chooses the k** degree polynomial P,p: that is optimum in the residual error
norm. That is, Py is a residual polynomial that minimizes the Ly norm of
the residual error,

(15) lIrklle = || Pope(M =1 A)ro]ll2 < [[P(M ™ A)lro]|l2

over all k** degree residual polynomials. To demonstrate the convergence of
the GMRES iterates, we may choose any k* degree residual polynomial, and
any initial iterate that makes the left side of (15) easy to estimate. Toward
that end, we choose the polynomial P(z) = (1 — z)¥, which corresponds to
a stationary Richardson iteration. In addition, we assume that the initial
iterate is zero, that is, vg(z) = 0. This implies that the initial error is eg = u,
which allows us to exploit the smoothness properties of u. We emphasize
that this choice of initial iterate is crucial to the analysis that follows. Of
course, in practice, one may wish to use a different vy, but one should ensure
that it is sufficiently smooth.

To show that a specified tolerance § in the Ls norm is obtained when
k = ks, we show that 7 can be chosen as a function of ¢ and § so that

(16) llrille < II(Z = M™1AY M~ Aleolllz < 6.

Let v be a general function satisfying homogeneous Dirichlet boundary con-
ditions, then

(I - M7 A] = ¢ ([M () = v®(0)] x[0,7]

(n + [(v(k) (1) — o) (0)) (i;—i:—i)] x|, 1]) .

€ ¢

Thus, since 79 = M ™! Alu], the bound in the L, norm of the residual error
at the k" iterate is

(18) H'rkH% < egkC}% + e2k+1C’ka+1 + GZkHC',EH.
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Here, Cy is an upper bound on the magnitude of u®) for z € Qpyper. In-
equality (18) does not imply that the GMRES iterates converge in the limit
as k — oo because the sequence {Cy} is unbounded (see below). However,
given a 6, we show that 7 can be chosen so that (16) holds for k = k;.

To choose 7, we use the analysis in §3 to obtain
(19) Cr = max u®(z) = ﬁ—ietl + Y-

outer

Here, v, = tnax F® (@) + O(e) is a constant based on (4). The constant

outer

(20) K = Ko+ O(e)

is determined by (5). From Eqn. (18), we must satisfy €* (F + %etv (1+
€

O(¢)) < 6 where I is an upper bound on 7 and v4y1. Assuming I' >

€, the desired tolerance on the residual error is satisfied for k = ks if

2K -
e or + Fe < < 6. Next, we will show that it is possible to choose

7 so that the above relation holds. Suppose we wish to converge in ks it-
4K K

We assume that ks is large enough so that Z% > Téks. (This provides

a lower bound on the number of iterations given 6 and €). We choose T

ks
erations. Then the above relation is satisfied if 7 < 1 + ¢ln ( J E——F-)

)
sothat 7 < 1+ €ln k) This expression is the basis for the heuristic

T = 1+ ¢reln(6), for choosing 7, where the constant c, is near unity.

Error Analysis. In general, a small residual error ||rg||2 does not guar-
antee a small error ||ex[le. We can establish a bound on the error based
on the residual. This bound follows from an examination of the solution
to (M1A)ex] = &, where ||ri|le < 8. For £ € Quuter, it has been
shown [5] that e = rx + O(¢). In addition, for £ € Qiner We have that
er = rp+ O(e) + O(e%l). Thus, the norm of the error is related to the
norm of the residual by |lex|lz = ||r&llz + O(e1/?). A tighter bound on the
norm of the error might be possible; however, with simple analysis, we have
shown that a small residual norm implies a small error norm, assuming a
sufficiently smooth initial error.

7. One-Dimensional Implementation and Demonstration

We demonstrate the convergence properties by approximating the solu-
tion of the advection-diffusion problem (1-2) with f(z) = —1 so that the
error is no larger than a tolerance TOL. The error tolerance applies to both
the discretization and to the iterative process.

The discretization of the advection operator is a second-order strictly
upwind scheme, and the diffusion operator is approximated using a second-
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Table 1: Experiments varying TOL (e = .01, ¢, = 1.0)

TOL || Azoyter | Number of Number of
grid points | GMRES steps
) .33 138 1
.01 1 144 1
.001 .032 166 2

Table 2: Experiments varying e (TOL = .025, ¢; = 1.0, AZoyter = .17 )

€ Number of Number of
grid points | GMRES steps
d 26 1
.01 141 1
.005 270 1

order centered scheme. Based on known behavior of the solution [5], the
boundary layer is in a neighborhood of z = 1 of size O(eIn(e)). The nonuni-
form grid is chosen to resolve this boundary layer. In the outer region, we
use AZouyter =~ TOLY2. This grid spacing is halved for successive mesh
points in the interface region between the boundary layer and the outer
region. The boundary layer region uses Azipner & €AZoyter. This will pro-
vide a uniformly second-order accurate method. At the interface we use
the second-order upwind method for the advection operator for all points
z; < 7, and the discretization of the full operator for all points z; > 7 (here,
we assume 7 is between two points in our grid.)

The experiments were performed in Matlab. The GMRES iteration was
halted when ||rg|l2/||ro||l2 < TOL. These experiments suggest that the con-
clusions from our analysis of the continuous problem also apply to the dis-
cretized problem (e.g., implementation in a finite-dimensional space).

Table 3: Experiments varying ¢,

cr Number of Number of
outer-region points | GMRES steps
1.2-1.0 30 2
.8 31 2
6 32 3
4 57 27

"The results summarized in Table 1 show that the method has slow growth
in the number of iterations as TOL is varied. The experiments reported in
Table 2 show that the number of iterations is (nearly) independent of e.
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However, total work per iteration increases. Next, in Table 3, only ¢, is
varied and the discretization fixed. With ¢ = .01 and TOL = .001, there
are 166 points in the grid. The number of iterations is sensitive to ¢,, as
seen in the dramatic increase in the number of GMRES steps for ¢, = 0.4.
Other experiments indicated that there is a strong interaction between the
choice of ¢, and the location of the interface between the outer and inner
subdomains. That is, 7 should be located outside or barely inside the region
that is refined. When 7 is well inside the refined region, the number of
GMRES iterations increases dramatically, regardless of whether 7 is inside
the boundary layer or not.

8. Two-Dimensional Results

Discretizations. Consider a tensor-product mesh P; ; = (x;,y;), where
it =0,...,N;y and j = 0,...,N,. Also let u;; represent the numerical
approximation to the solution at P;;, that is, u;; =~ u(x;,y;). The points
need not be uniformly distributed. In practice, the coarse mesh would be
used in the “smooth” subdomain €., and a fine mesh in the “boundary layer”
subdomain ;. We use a first order upwind approximation for the first order
spatial derivatives, and centered differences are used for the second order
spatial derivatives. Consequently, the discretization of (1) can be formulated
as the system of linear equations,

(21) Au=f

where A = A, — €Ay, with A, Ay, and f being the discretizations of L., Ly,
and the boundary conditions, respectively.

In this section, we introduce and compare several preconditioning ma-
trices, including two based on asymptotics and domain decomposition. The
description of the preconditioning matrices is most easily accomplished if we
introduce a block partitioning of 4 (as in [1]). Let u = [ul uZ]7, where u.
are the unknowns corresponding to the smooth subdomain €2, and u,4 are the
unknowns corresponding to the boundary layer subdomain €23. Moreover,
let the unknowns within a subdomain be ordered according to the direction
of the convection [2, 3]. Since we are using a strictly upwind differencing
scheme for the convection terms, this means A, is lower triangular. Given

this ordering, we can partition the matrices as follows:

A Dy Dia
(22) Ac [ A21 A22 :l ar d [ .D2 1 .D22

where Aj; and Ago are lower tridiagonal (we have assumed a and b are
positive), Dy and Dy are pentadiagonal, and Agi, Do1, and Dyy contain
one nonzero sub- or super-diagonal. The off-diagonal blocks A1, Dy, and
Dy, represent the portions of the difference stencils that couple the two
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subdomains, and the diagonal blocks contain the portions of the difference
stencils that couple points entirely within one subdomain or the other. That
is, we solve the equivalent linear system M ~*Au = M~ f where M is chosen
to approximate A in some sense and is easy to invert.

We present several preconditioners derived from asymptotic analysis and
compare them to “standard” preconditioners. Our baseline “preconditioner”
is the identity matrix (i.e., no preconditioning), M;4 = I. Since the diagonal
of A is constant in our test problems, diagonal preconditioning has no effect
on GMRES convergence. We also consider the Gauss-Seidel (lower triangular
part of A) preconditioner,

A11 —_ EDH 0
23 M, = -
(23) 92 [ Ag; — €Dy Agp —€Doy |’

where Dj; is the lower triangular part of D;;. The next preconditioner is the
matrix representation of the discrete convection operator,

A 0]
24 M,=A.=| ‘1 )
(24) [ Ay Ay ]

This preconditioner should be effective in the smooth subdomain, but it ne-
glects the importance of the diffusion term in the boundary layer subdomain.
"To compensate for this, we might consider the block diagonal preconditioner

A 0
25 My, =| 74
) o= e |

This is our first asymptotics-motivated domain decomposition precondi-
tioner. It is equivalent to solving the convection equation (7) in Q. and
the full equation (9) in Q4, and ignoring the coupling of unknowns across
the subdomain interface. Thus, this preconditioner corresponds to solving
the original problem with certain nonphysical conditions imposed at the
interface. The advantage of this preconditioner is its inherent large-grain
parallelism: the two subproblems can be solved independently. We rely on
the iterative method to “glue” the two pieces together.

If we wish to obtain a more physically realistic preconditioner, we can

include the coupling of the Q. and §; unknowns. This yields the following
block lower triangular matrix

A 0 *
(26 My = 1
) dd A1 —€eDyy  Agy —€Doy |-

F.inally, note that the physically motivated domain decomposition pre-
conditioners Myy and Myy require the solution of the original equation (1),
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Table 4. Condition Number

Grid Size 10 x 10 20 x 20 30 x 30
Actual | Estimate | Actual | Estimate | Actual | Estimate
M=1 33. 23. 110 74. 240 150
Mg, 8.0 4.7 29 16. 66 43,
M, 4.8 2.3 12 3.8 23 4.9
My 10. 4.5 33 8.9 81 15.
Mgy 8.9 2.4 35 4.1 97 6.1
Table 5: Number of iterations

Grid Size || 10 x 10 | 20 x 20 | 30 x 30 | 40 x 40

M=1 48 90 112 133

M, 15 38 79 87

M., 15 27 39 52

My, 19 35 58 89

Myg 15 27 39 53

bit on a smaller domain. Since the boundary layer region is a fraction of
the total computational domain, this subproblem is small compared to the
full problem.

The condition number of the upper Hessenberg matrix that is generated
during the GMRES iterations is an estimate for the condition number of the
preconditioned matrix, and is an indication of the stiffness of the problem.
The estimates in Table 4 were obtained after the method had obtained a
relative residual of 10~%. By comparing the results presented in Table 4
with those in Table 5, we see that this estimate is a better predictor of the
total number of iterations than the actual condition number. The results
in Table 5 indicate that the most efficient preconditioner would be Meo;
however, this might change if a nonuniform mesh were used.
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