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A Spectral Stokes Solver in
Domain Decomposition Methods

M. AZAIEZ AND A. QUARTERONI

ABSTRACT. We present a domain decomposition solver for the linear Stokes
problem. We use a technique based on an equivalence between the single-domain
and multidomain formulations of the Stokes problem in which the transmission
conditions at subdomain interfaces are properly taken in account. The discrete
problem is solved using the Uzawa algorithm.

1. Introduction

The aim of this note is to present a domain decomposition method for the spectral
solution of Stokes equations. After recalling the spectral collocation method in its
single-domain version, we introduce our multidomain approach which is based on
the concept of transmission interface conditions. The resulting problem is handled
by an Uzawa solution algorithm which requires at each iteration the solution of a
Poisson boundary value problem for each velocity component. At this stage we apply
the projection decomposition method introduced in [5]. We conclude by a numerical
investigation that shows the efficiency and accuracy of our approach.

2. The Stokes Problem
The Stokes problem reads : find v and p such that
—vAu+Vp=f in O,

(1) V-u=0 in Q,
u=0 on 00,
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where Q =] — 1,1[2, f is the density force and v the viscosity. This problem admits
the following variational formulation:
Find 4 € X and p € M such that

(2) v(Vu, Vo) = (V-u,p) =< f,v> VveX

(3) (V-u,q)=0VgeM,

where X = (H&(Q))2 and M = L3(Q) = {ve I*Q), [vdz = 0}. Here (-,")
denotes the scalar product of L2{Q) and < -,- > the duality between X " and X (for
notation see, e.g., Lions and Magenes [1]).

This problem is well posed and has a unique solution in X x M.

3. Spectral single-domain discretization

We need first to introduce the polynomial spaces of approximation. For the ve-
locity we choose Xy = (P%(02))? and for the pressure My = Py (£2) () L3(Q), where
Py (€2) denotes the space of algebraic polynomials of degree not greater than N with
respect to each coordinate.

Let Ly be the Legendre polynomial of degree N, the solution of the Sturm-
Liouville equation

7

((1 - x2)L'N(m)) FN(N+1)Ly()=0, -1<z<l.

We introduce the following discrete inner product:

N
(4) (uv U)N = Z u(&i:ﬁj)”(&iy Sj)pip;h V(U7U) S (CO(Q))Za
i,§=0
where {£;,0 < j < N} are the N + 1 Gauss-Lobatto-Legendre points, the roots of
‘the polynomial: (1—2z?)Ly(z), and {p;,0 < j < N} are the associated weights (see,
e.g., [2]). Then the approximate problem based on the Legendre collocation method
reads : Find (uy,py) in Xy x My such that for all vy € X and all gy € My

(5) AN(UNWN)‘i'bN(UN,pN):(fﬂ)N)N,

(6) by (un,qn) =0,

where Ay (u,v) = v (Vu, Vo) 5 and by (v,q) = — (V.u,q) .
Both velocity and pressure will be computed on the Gauss-Lobatto grid Zx:

Ev ={z=1(§,§),0<i<N,0<j<N}.

As proven by Bernardi and Maday [3], the drawback of the previous formu-
lation is that it is affected by spurious modes. These are nonzero polynomials
g € Py(Q)NL3(S2) such that by(v,¢*) = 0, Vo € Xy. If such a ¢* exists then
each couple (uxn,py + ¢*) would also be a solution, yielding a potential instability
in the pressure approximation.
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The subspace Zx of Py () () L3(2) made of spurious modes has dimension 7 and
is spanned by

 Ln(y), Ln(2) Ln(2)La(y), Ly (z) Ly (y),
Ly (x)yLy (4), Ly (2) Ly (y), Ly (z)yLy(y).

To get rid of these undesirable modes and to get satisfactory approximation, the
pressure space Mg can be chosen such that it is a supplementary space of 2y, i.e.

() Py(Q)NI}Q) = My & Zy.

In this case, one can prove the existence of an Inf-Sup condition with a constant
behaving as O(N1) [3], i.e.,

inf b(va) O(N-1.
9€M3 vexy |1vllx llllae
The discrete problem (5) — (6) can be solved using the following Uzawa algorithm
[2]. Formally we write

(8) - uy = Sy' (f — Vnpn)

where Sy and Vy are the algebraic representations of Ay and by, respectively.
Inserting ux in the continuity equation we get:

9) Va8 Vnpy = V.S f.
The Uzawa operator is then
(10) Vn.Sy'Vn

and it is positive, symmetric with a condition number of O(N?). This enables the
use of conjugate gradient iterations to solve (9).

4. Non-overlapping domain decomposition

Our non-overlapping domain decomposition solver will be based on Uzawa’s algo-
rithm.

The solution of such a system is accomplished via a global inner/outer iterative
scheme where at each iteration only elliptic problems need to be solved. An equiva-
lence principle between single and multidomain formulations of the Helmholtz prob-
lem is used in this case, and the same iterative algorithm is applied to the resolution
of the inner iteration yielding now a sequence of single domain elliptic problems.

Let Q be a bounded domain (that we assume to be a rectangle for the sake of
simplicity) of JR? partitioned into Q; and Qy with I' = 9Q; [ 9Q;.

For the velocity space we take

(11) Xy = {Uh € () | = wla, € (Pn(Q:))*,vnlon = 0}-
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and for the pressure

(12) Mh={qhec°(s’z> ldh = anlos € Pl [ qh=o}.

Note that the pressure is required to be continuous over ) a priori.
The multidomain problem is defined as follows.
Find (up,pr) in X, X My, such that for all v, in X}, and for all g, in M,

(18) Ap, (uh, Vr) + bh (Uh, pr) = (fvn)

(14) bn (U, qn) = 0,

where Ap(un,vn) = Y12V (Vuh, val)N,i, b (v, qn) = — im0 (Veuh, q};)N’i,
and where (.,.)n,; denotes the generalization of the discrete inner product (., Jn on
Q; based on transformed nodes {;- and weights pg Also in this case the problem
is well-posed when the pressure is taken in a space complementary to the one of
the spurious modes. Concerning the latter, taking for instance the domain Q =
] —2,2[x]0,2[, it can be proven (see [4]) that the space of spurious modes

Zp = {qn € My : bn(v,qn) = 0Vv € X3},
has dimension 7. A set of generators is provided by the following three functions

(Ln(z+1), ()N Ly(z - 1)),
(15) (Ln(y), Lv (@),
(Ln(z+1)Ly(y), (-1)¥ Ly (z — 1)Ln(y))

(for each couple, the first component denotes the value attained in £21, the second one
is in §22) plus four other functions which are the characteristic polynomials associated
with the four corner points of 2. For a domain €} of more general shape (i.e., made
by 2 union of rectangles), we still have the three spurious modes (15), plus as many
characteristic functions as the number of corners of 9. We point out that the
existence of internal cross points does not introduce additional spurious modes. The
latter property would not be true if we used a space of discountinuous pressures.

The pressure subspace M} that we are going to use is a complementary space of
Zp, ie. it satisfies M), = M @ 25, and we propose a subdomain iteration method
to solve the discrete problem.

5. A solver based on subdomain iterations

Using the spectral collocation method, the formulation (13) — (14) of the multido-
main method can be given the following pointwise interpretation:
Find (up,pr) € X X Mj, such that
~vAu, +Vpr =fi i ELNM
V., =0, in EL\T
uh, =0 on ELNOY
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and

—vAu, +Vpi = f7,  in BN
Vai =0, in B2\T
uw;=0 on E%()OQ.

The interface conditions (according to [6]) are:

(16) up =ul on Ek,

Ou? Ou}
(17) (V—i —pinp) - (I/-—h —p,lznp) = -w’R; —w'R} on EL,

Bnp 37‘1,11
(18) Ph =}, on Ej,
(19) w'V-ul +w?V-ul =0 on EE.

Here, nr is the normal unit vector on I' directed outward with respect to €,
w! = p}; and w? = p2, R = —vAu, + Vpj, — fi, i = 1,2, and E} is the set of
Legendre Gauss-Lobatto nodes in €2; while

= =2l — =2
gy =Sy T =24

Conditions (16) yield the continuity of the velocity, whereas (17) and (18) enforce
the continuity of the normal derivative in a weak form, i.e.

Bnp Bnp
This global system is solved by using the Uzawa algorithm, consisting of deducing
a global problem for the pressure field (p},p?) similar to (9) and then solving it by
a conjugate gradient procedure. At any step one Poisson problem for each velocity
component is solved. At this stage we apply a domain decomposition technique
which enforces both (16) and (20) on I'. Among all available domain decomposition
spectral solvers, we apply the one based on the Spectral Projection Method (see [5]).
This algorithm is effective and allows spectral accuracy to be achieved.

(20) = —-w?RZ —w'R} on EX.

6. Some numerical results

Our test case concerns the approximation of (1) corresponding to the exact solu-
tion: ue, = (sin(nz)sin(my), sin(wz) sin(mry)) and pe, = sin(nz) cos(ry), defined on
the domain 2 =]0,1[% .

Let {lunlln = (Z?g;’m(V.uh,V.uh) N,i) * be the discrete norm and ndom is the
number of subdomains (of equal measure) into which the domain £ has been subdi-
vided.

We recall that the numerical divergence is zero at all the collocation nodes of ;
and €0y, except those lying on the interface I' where, however, (19) holds.
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We are also interested in the number of Uzawa iterations using a suitable mass
diagonal matrix preconditioner (see [7]). We report the number of Uzawa iterations,
for several numbers of subdomains, taking the polynomial degree N equal to 8 within
each subdomain (Table 1)

Table 1

Subdomains | 1x1 | 2x2 | 3x3 | 4x4 | 5xb | 6x6 | 77 | 8x8 | 9x9 | 10x10
Tterations 7 16116 | 16 { 18 | 18 | 16 | 16 | 16 16

We observe that the iteration number is independent of the number of subdomains.
In Table 2 we report the value of the divergence norm [[uy ||, for several number of
subdomains (left) and different value of the polynomial degree N on each subdomain
(top). Spectral approximation is verified.

Table 2

6 8 10 12 14 16
Ix1 102e—~1) 05e—3 | 04e—5 | 03e—7 | 0.1e—9 | 0.9e —12
2x2 103e—3| 03e—5 | 0.7e—7 | 03e—10|0.2e —12 | 0.2 — 11
4%4 | 03e—4)] 03e—7 |02e—10|0.1e— 11| 0.4e — 12 | 0.4e —11
8x8 |09 —6| 02e—-9 |08 —12|02¢—11 |09 —11|08e—11

10x10 | 0.3e — 7 | 0.5¢ — 10 { 0.1e — 11 | 0.3¢ — 11 | 0.8¢ — 11 | 0.9¢ — 11

In these tables, we have indeed used the full space M, defined in (12). The
spurious modes that are intrinsically produced by our scheme (13) - (14) are easy to
filter out along the Uzawa iteration process and the pressure obtained is then filtered
by using the method described in [§]
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