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Preconditioned Iterative Methods in a Subspace
for Linear Algebraic Equations with
Large Jumps in the Coefficients

NIKOLAI S. BAKHVALOV AND ANDREW V. KNYAZEV

ABSTRACT. We consider a family of symmetric matrices A, = Ap + wB,
with a nonnegative definite matrix Ap, a positive definite matrix B, and a
nonnegative parameter w < 1. Small w leads to a poor conditioned matrix
A, with jumps in the coeflicients. For solving linear algebraic equations
with the matrix A, , we use standard preconditioned iterative methods with
the matrix B as a preconditioner. We show that a proper choice of the
initial guess makes possible keeping all residuals in the subspace Im(4g).
Using this property we estimate, uniformly in w, the convergence rate of

the methods.

Algebraic equations of this type arise naturally as finite element dis-
cretizations of boundary value problems for PDE with large jumps of coef-
ficients. For such problems the rate of convergence does not decrease when
the mesh gets finer and/or w tends to zero; each iteration has only a modest
cost. The case w = 0 corresponds to the fictitious component/capacitance

matrix method.

1. Introduction

In recent years, the study of preconditioners for iterative methods for solv-
ing large linear systems of equations, arising from discretizations of stationary
boundary value problems of mathematical physics, has become a major focus of
numerical analysts and engineers. In each iteration step of such a method, only
a linear system with a special matrix, the preconditioner, has to be solved; the
given system matrix has to be available only in terms of a matrix-vector multipli-
cation. The basic theory of convergence of these methods is very well developed
for the symmetric, positive definite case. It is well known that the preconditioner
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must approximate the inverse of the matrix of the original system well in order
to obtain rapid convergence properties. For finite element /difference problems
rapid convergence typically means that the rate of convergence is independent
of the mesh size. Tt is common to use a conjugate gradient type method as an
accelerator in such iterations.

There are several methods of constructing preconditioners, which allow the
use of efficient methods, such as fast direct solvers, for solving the related linear
systems. Many such methods with asymptotically optimal a priori estimates
of the computational cost [11] are known, and some of these preconditioned
iterative methods are among the best for solving mesh problems when the mesh
parameter is small enough.

A particularly challenging class of problems arises with models described by
partial differential equations (PDE) with discontinuous coefficients. Many im-
portant physical problems are of this nature. Such difficult problems arise in
the design and study of numerical methods for composite materials built from
essentially different components. Composites (or composite materials) are me-
dia with a large number of non-homogeneous inclusions of small sizes in at least
one direction. Stationary states of such media are described by elliptic PDE
with highly oscillating coefficients. Homogenization is the process of finding a
set of constant coefficients such that the solution of the original PDE can be
approximated well by that of the much simpler problem. The computation of
homogenized coefficients for a composite with periodic structure reduces to solv-
ing a series of periodic boundary value problem for the original PDE in a domain
of periodicity, see [8]. For composites with essentially different componenfs, the
coeflicients of the PDE in the domain of periodicity are discontinuous and have
large jumps.

Fictitious domain/embedding method is another source of PDE with jumps
of coefficients, cf. e.g. (19, 2, 10, 14]. In this method, the original boundary
value problem for the PDE is changed into a new boundary value problem with
a domain in which the original one is embedded. In the new fictitious part of the
domain the coefficients of PDE are chosen close to zero, if the original boundary
condition is of Neumann type, or very large in the Dirichlet case. The solutions
of thfase new problems approximate, or might even coincide with, the desired
2(;1;1}:;0;;2;1 I’?f‘éx;:;ff:; i:aed?::f the ﬁctit.hious domain n{xethod improves the shape
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maitrix.

We consider a parametric family of symmetric matrices 4, = Ay + wB, with
a nonnegative definite matrix Ay, a positive definite matrix B, and a parameter
w,0 < w < 1. Small w leads to a large drop of coefficients of A,,. For solving linear
algebraic equations with matrix 4., we use standard preconditioned iterative
methods with matrix B as a preconditioner. We show that a proper choice of
the initial guess makes it possible to keep all residuals in the subspace I m(Ag)
and the difference between all iteration vectors and the solution in the subspace
Im(B~!Ap). Using this property we estimate, uniformly in w, the convergence
rate of the methods.

A similar method, based on the same idea, was proposed in [1]. This method
can only be applied for solving PDE with piece wise constant coefficients. We
have to note that the proof of the mesh extension theorem in [1] is not correct.

In the case w = 0, these methods are closely related to the capacitance matriz
methods [18, 16, 17, 9, 15].

The importance of the idea of iterative methods in a subspace is widely rec-
ognized in the theory of the domain decomposition methods, e.g. [13].

2. Preconditioned Iterative Methods for the symmetric positive
definite case

We first consider a linear algebraic system Au = f with a symmetric positive
definite matrix A. In practice, a direct solution of that system often requires
very considerable computational work, so iterative methods of the form

(1) un+1 =" — ,ynB—l(A,un _ f)

with a symmetric positive definite matrix B, the preconditioner, are of great

importance.
There is an equivalent form of the method for residuals r = Au™ — f :

prtl = gpn — Am AR 1P 10 = A0 — f,
(2) ottt = gn +,rn+1, o0 = ,,.O’

un+1 — uO - ,},'nB—lan.

Preconditioned iterative methods of this kind can be very effective for the
solution of systems of equations arising from discretizations of elliptic operators
and their effectiveness can, of course, be further enhanced by the use of conjugate
gradient type methods. For an appropriate choice of the preconditioner B, the
convergence does not slow down when the mesh is refined and each iteration has

a small cost; see e.g. [11].
Let

(3) 0 < 6o(Bv,v) < (Av,v) < 6:(Bv,v),v #0.
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The importance of choosing the preconditioner B such that §,/8g, the condition
number of B~1L, either is independent of N, the size of the system, or depends
weakly, e.g. polylogarithmically in IV, is widely recognized. At the same time,
the numerical solution of the system with the matrix B should ideally require on
the order of N, or NIn N arithmetic operations for single processor computers.

It is well known that, typically, the smaller the ratio /6, the slower the
convergence.

We cite here the simplest convergence estimate. Let v = 6;1; then

() (Bu™ — u),u" — u) < " (B® — u),u° —w), ¢ =1 - 8/61,

for an arbitrary initial guess u®.

3. The symmetric nonnegative definite case

We now consider the case A = Ay where Aj is a symmetric nonnegative
definite matrix. The matrix B may also be symmetric nonnegative definite with
the kernel KerB C KerAq. Such matrices B and A arise, for example, when
considering periodic boundary value problems. In the present paper, however,
we, for simplicity, consider bnly positive definite B.

Inequality (3) can not be true any longer, because the matrix Ag has a kernel.
Let, instead of (3), the following analogous inequalities hold:

(5) 0 < 6o(Bv,v) < (Aow,v) < 61(Bv,v),v # 0,v € Im(B~ ' Ap),

and, thereby, &’s have been redefined. The subspace I m(B~1Ag) will play the
key role and we denote it by Im = Im(B~1A4,).

LEMMA 1. The subspace Im consists of all B-normal, i.e. normal in the

scalar product (Bx, ), solutions of the system Agu = f for all possible right-
hand sides f.

The following theorem is well known, cf. [2].

THEOREM 1. Let u be a B-normal solution of Apu = f for a given f € ImAo
and let the initial guess u® be chosen such that v® € Im. Then the iterative
method (1) with A = Ay and v, = 6, converges to this B-normal solution and
convergence estimate (4) holds with &’s from (5).

The proof is based on the fact that the subspace I is invariant with respect
to the operator B—1A4,.

4. The symmetric positive definite case

We finally consider a parametric family of symmetric positive definite matrices
A=A, = Ap+wB, with a parameter w,0 < w < 1. The condition number of the
matrix A, as well as that of the preconditioned matrix B~1 A, tends to infinity
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as w tends to zero, and the common convergence theory of the method (1) for
the positive definite case becomes useless.
We can improve the convergence by using a special initial guess, however.

THEOREM 2. Let the initial guess u® be chosen such that u° — B—1 f/w € Im.
Then the iterative method (1) with A = A, and Yk = 61 + 1 converges and the
convergence estimate (4) holds with ¢ =1— 6,/(8; +1) and 6’s from (5).

The proof is very similar to the proof of the previous theorem. The subspace
I'm is invariant with respect to the operator B—14, = B~'Ag + wI and the
initial error u% — v is in this subspace.

We also note that the initial residual and, therefore, all residuals of the method
(2) lie in the subspace ImAy. k

Analogous convergence results may be, evidently, obtained for preconditioned
conjugate gradient methods with this choice of the initial guess.

A dual approach to the numerical solution of problems with large jumps of
coeflicients, using a mixed variational formulation, is described in [12]. For a
general saddle point problem

® (& $)(0)-(7),

where F, = Fy + wl, Fy symmetric nonnegative definite, and w is a parameter,
0 <w <1, we obtain

P'Fuv =0, P= GG*GY"IG* Pt =T—-P,
Py =p, p=G(G*G)71f.

P is an orthoprojector and the system is further reformulated as a single
matrix equation with a symmetric, nonnegative definite matrix PLF, P+. This
matrix, as well as our preconditioned matrix B~1A,,, is an wl perturbation in
the subspace Im(P") of a symmetric nonnegative definite matrix. Therefore,
our trick with the special initial guess for a standard iterative method is useful
for this matrix, too; see [12].

This approach was applied in [3] to the diffusion equation taking A~! as
the diffusion coefficient and —G as the gradient operator. The method is most
efficient when multiplication by P can be calculated using a fast direct method,
e.g. for a problem with a periodic boundary condition, which arises naturally in
homogenization and fictitious domain methods.

In the near future we are planning to consider a case of a nonsymmetric family
A, = Ap +wB, by using symmetrization in the form (B='A4,)*B"1A,,.

The authors are indebted to Olof Widlund and to the Organizing Committee
of the Seventh International Conference on Domain Decomposition Methods for

their support.
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