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ABSTRACT. Modeling semiconductor devices is an important technologi-
cal problem. The traditional approach solves coupled advection-diffusion
carrier-transport equations in two and three spatial dimensions on either
high-end scientific workstations or traditional vector supercomputers. The
equations need specialized discretizations as well as nonlinear and linear
iterative methods. We will describe some of these techniques and our pre-
liminary experience with coarse-grained domain-decomposition techniques
applied on a collection of high-performance workstations connected at a
100Mb/s shared network.

1. Introduction

Simulation is widely used in the semiconductor industry to explore new man-
ufacturing techniques, to characterize novel device technologies, and to validate
and characterize circuit designs.

The transport physics of carriers in semiconductor devices has been stud-
ied for many years. Most of the existing model equations are derived from the
Boltzmann transport equation (BTE) although the ideal set of equations would
include Maxwell’s and Schrédinger’s equations [10]. Usually, Maxwell's equa-
tions are replaced by a Poisson equation via an assumption of locally constant
dielectric behavior. Schrédinger’s equation is obviated by making assumptions
about the electronic states and band structure of the semiconductor. A simple
model, called drift-diffusion, is effective for silicon devices down to 0.5um or even
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FiGURE 1. This is a two-dimensional cross-section of a three-
dimensional 0.8um BiCMOS bipolar transistor [13]. The con-
tour lines represent impurity concentrations. The shaded gray
areas are silicon oxide. The darker shaded region is a polysili-
con wire. C, E, and B represent the collector, emitter, and base,
respectively.

0.25um feature sizes. It requires the solution of a Poisson equation coupled to
two, formally parabolic, advection-diffusion equations

(1.1) -V - (eVy) = —q(n —p— N),
on
(1.3) %% =-V-J,—R,

where the current densities are

(1.4) Jn = =pnVY + D, Vn,
(1.5) Jp = —pppVep — D, Vp.

In silicon oxide (insulating) regions, these coupled equations are replaced by
—V - (V¥) = 0. Here
s ¢ and ¢ are dielectric constants;
g is the magnitude of an elementary charge;
zeR¥andteR represent space and time, respectively;
N(z) is the impurity or doping concentration;
n, {p are carrier mobilities; Dy, D, are diffusion coefficients;
R(n, p) represents electron-hole recombination-generation;
¥{z,t) is the electrostatic potential;
n{x,t) and p(z,t) are the electron and hole concentrations, respectively.
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FIGURE 2. This represents the results of two- and three-
dimensional simulations as well as measurements [13].

Geometry of the device structure and material interfaces are important; Fig-
ure 1 shows a cross-section of a bipolar transistor. Boundary conditions are
commonly applied voltages at contacts along the perimeter of the device spec-
ified via 7. Variables n and p range over several orders of magnitude while 1
varies less. The recombination-generation term, R, couples n and p. For power
devices, it is sometimes necessary to add a coupled heat equation to model sub-
strate heating.

Since the mid-1960s, numerous algorithms have been developed to solve the
drift-diffusion equations. Specialized exponential upwinding schemes were in-
vented for one-dimensional problems. These were generalized to tensor-product
grids in two and three dimensions. The discretizations were also adapted to
general finite volumes and elements. There are significant nonlinearities in this
model so considerable research on Newton-like and nonlinear Gauss-Seidel meth-
ods has been done. Static grid adaption and continuation techniques have been
used to explore devices with complex responses. Specialized sparse direct and
iterative methods have been developed as well.

The state-of-the-art is such that complex two-dimensional problems are solved
routinely. Sparse direct methods with triangular grids are effective and efficient
for two-dimensional problems on conventional supercomputer architectures, like
a Cray Y-MP. A snapshot of the state-of-the-art in 1990 is given by [11]. For
drift-diffusion modeling, three-dimensional simulation is becoming more impor-
tant (see Figure 2). However, grid generation and adaption as well as linear
iterative methods are still inadequate for routine simulation.
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There are more advanced partial-differential equation (PDE) models for semi-
conductor devices. The so-called energy-balance or energy-transport equations
are similar to the drift-diffusion equations in mathematical character. Additional
equations for carrier energy variables have to be solved. The “hydrodynamic”
model involves formally hyperbolic equations, which call for alternate algorith-
mic approaches. Our motivation comes from systems of a form analogous to the
drift-diffusion or energy-transport models, rather than the hydrodynamic model.

Over the years, AT&T Bell Laboratories has relied on a series of Cray Re-
search computers to do its large-scale simulation. We currently employ a Cray
Y-MP M92/256 as a production workhorse. Our evaluations of parallel com-
puter systems have been mixed, particularly since the specialized MIMD archi-
tectures carry a significant development and communication-infrastructure over-
head. However, high-performance microprocessors in the form of workstations
are changing things. We embarked on a prototype PDE solver designed to run on
workstations connected via a “high-speed” network interface. Our hope is that
such an approach will lead to cost-effective computing for two- and especially
three-dimensional simulation. From our brief discussion of device modeling, it is
apparent that the ability to solve general PDEs on complex geometries is crucial.

2. Domain decomposition approach

We are developing a collection of C codes to deal with general elliptic and
advection-diffusions PDEs on composite grids made up of simplices, prisms,
pyramids, and bricks. Each of the following has to be dealt with:

e geometry specification;
grid generation;
temporal discretizations;

spatial discretizations, including a variety of upwinding techniques suit-
able for advection-diffusion equations;
e Newton-like and other iterative methods for dealing with the associated
nonlinear systems; _
o continuation methods for characterization studies;
e automatic differentiation techniques for linearization;
o sparse direct and iterative methods for the associated nonsymmetric
linear systems of equations.
FEach of these subproblems is significant by itself, but all of them must be dealt
with to produce a generically useful simulation toolbox. Too often researchers
allow themselves to use simplified approaches only suitable for model problems
on trivial geometries.

For two-dimensional, single device, simulation problems with well-adapted
grids (typically less than 10% unknowns), it is difficult to beat sparse direct
factorization methods for solving the linear systems. However, numerous pos-
sibilities exist for iterative methods. Domain decomposition appears to us as a
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natural means to exploit coarse-grained parallelism.

“Domain decomposition” refers to any method that divides the original prob-
lem domain into pieces and solves locally on each subdomain [12]. The par-
ticular variant that we use, multiplicative overlapping Schwarz [4, 6], defines
subdomains with overlap and solves local problems in succession, propagating
data from the solution on the interior of one subdomain to the boundary values
of the next subdomain. To allow information to propagate more rapidly, a coarse
grid solution is also used. Finally, rather than cycling through all the subdo-
mains repeatedly, as in a pure alternating Schwarz method, we use one sweep as
a preconditioner for an iterative linear system solver.

To be more explicit, suppose we wish to solve Lu = f on , u = b on 99,
which we discretize as Au = Rf — Bb using a finite volume or “box” approach.
Without loss of generality, we will call the modified right hand side in this system
f and assume b = 0. The domain  is subdivided into k overlapping subdomains
2; with local operators that are restrictions of the global ones in the sense that
at an interior point j of the global grid corresponding to interior point ¢ in
subdomain i, we have [f — Au); = [f; — A;u; — B;w;],. Here u; means the local
interior unknowns and w,; means the local boundary values, which are 0 or u
values from a neighboring subdomain.

Define a preconditioner v = Mg for solving Av = g with a Krylov space
method by the steps

(2.1) 9c = Ifg (restrict to coarse grid)

(2.2) Ave = g, on 2

(2.3) vy = I, (prolongate to fine grid)

(2.4) from vy send values into w;

(2.5) for 1<:1<k

(2.6) Agvr, = g, — Brwy, (local solve on Q)
(2.7 from vy send values to w; for neighboring §;

The final v is obtained by assembling values from the subdomains.

The multiplicative Schwarz method is attractive to us because we want a
good serial code, and in our workstation cluster environment we seek only coarse
parallelism. In contrast, the additive Schwarz variant provides more parallelism
at the cost of roughly twice as many iterations [2, 3]. So, while other computer
configurations would call for other methods, for the next several years we see
workstation networks as the best price/performance choice.

Although in theory one must increase the number of rows of overlap between
subdomains as the grid is refined in order to keep the same rate of convergence,
previous experience has shown that this is balanced by the increased work [7, 14].
Following those earlier conclusions, we simply take one row of unknowns for the
overlap.
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3. Communication structure

As mentioned in the previous section, our interest in this project has been to
explore whether an inexpensive network of workstations is capable of the VLSI
simulation modeling that had previously required Cray supercomputer resources.
Can one get by without shared memory or specialized communication fabric?
The cautionary words of Baskett and Hennessy [13 Aug 1993, Science, p.868]
make this seem unlikely.

“One potentially attractive approach to building parallel pro-
cessors is to use workstations connected on a local area network,
often called a workstation cluster. This approach, however, has
proved suitable only for applications where the parallel compu-
tations are so coarse-grained as to be essentially independent.”
Surely the coupling between neighboring subdomains keeps the subproblems
from being “essentially independent”?

Our laboratory was purchasing Silicon Graphics Indigo 50MHz MIPS R4000
workstations connected by a Fiber Distributed Data Interface (FDDI) network
for a multimedia experiment; we decided to see if we could put them to use
solving differential equations when they weren’t otherwise needed. FDDI is
nominally a 12 megabyte per second (MB/s) ring with a maximum length of
100km using a timed token-passing protocol, in which each packet goes all the
way around the ring. The SGI implementation we use has been found to be
reasonably easy to administer, and we consistently measure 7TMB/s or better
for large transfers (user space on one machine to user space on another). In
contrived circumstances in which few pages of memory have to be touched, we
measure as much as 11MB/s. The measured latency of about 1ms is far higher
than the intrinsic hardware latency of 10us around the ring, but as we shall see
is sufficient for domain decomposition.

‘We expect the FDDI network to be replaced in the next year or so by Asyn-
chronous Transfer Mode (ATM), but are happy with “dull but deliverable” FDDI
for now. The number of workstations we expect to be cooperatively solving one
problem is limited more by sociological and economic constraints than by scaling
limits of the network. Also, while the transfer rates needed by domain decom-
position are high compared to the typical loaded campus Ethernet, the traffic
is rather bursty and can be accommodated adequately on a shared medium.
This is in contrast to the demands of the same set of workstations if they are
transmitting video signals to each other.

One specific disappointment with the hardware as seen at the user level is
that, although each packet transits each workstation, there appeared to be no
feasible way to use this for data broadcast. We were using TCP as the transport
protocol, not wishing to bear the burden of adding reliability onto UDP [5]. A
sufficiently sophisticated communications package might do hardware broadcast,
but as far as we could tell none of the popular implementations is yet up to this.
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Certainly the one we tried, pvm [9], was far from using the full FDDI bandwidth
even for direct process-to-process communication.

The communication needs of domain decomposition turn out to be so simple
that a trivial communication package built directly on sockets and read/write is
sufficiently expressive and efficient. One “coarse-grid process” formulates, com-
putes, and distributes the coarse grid solution; multiple “fine-grid processes”
talk to the coarse-grid process and to fine-grid processes for neighboring do-
mains. All processes execute the same program and hold the coarse grid and
subdomain topology, but only store and compute fine grid values for the subdo-
mains “owned” by that process. This leads to send/receive pairs that are close
together in the source code, with a static matching known at compile time, so
correct sequencing and typing of messages is immediate.

There are three classes of communication: dot products for the outer Krylov
iteration, neighbor communication between fine-grid processes, and communica-
tion between fine-grid processes and the coarse-grid process.

Our implementation of BICGSTAB [15] is shown in Figure 3. In order to bring
to the surface the essential global synchronization points, we have written this
in a rather unusual style. The function B takes as its first argument a string
representing in readable form an operation that can be completed with, at most,
one communication. OQur C statement

omega = B("dot{r*MAr}/dot{MAr*MAr}");
would ordinarily be written as

omega = dot(r,MAr)/dot (MAr,MAr);
an unusually clever communications package might be able to batch the two sum
operations together, but probably not without further hints. Alternatively, one
might write the vector primitives to use lazy evaluation, but the reader has to
trust that sophisticated operations behind the scenes are doing what is intended.
Our coding shows the reader immediately that one communication is involved,
without any need to understand and debug scheduling policies.

For neighbor communication, each process loops through all the subdomains
in order. If a process “owns” a subdomain, then it performs a local solve, using
yi2m {16] for the experiments reported below, and sends boundary data to its
neighbor processes; if instead its neighbor owns the subdomain, then the process
waits to receive data from its neighbor; otherwise, the process examines the
next subdomain. This arrangement is self-synchronizing, with no explicit task
management. Subdomains are colored by a greedy algorithm and different color
subdomains assigned statically to separate processes. If four colors are needed,
four processes are assigned to each physical processor. Obviously, we attempt to
place neighbors on the same processor when possible. Assuming the work can
be predicted well enough, and partitioned evenly enough, this static assignment
has given good overlap of communication and computation, as will be seen in
the next section.
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#include "subdom.h"
void bicgstab( void (*A)(int,int,void*), void *Auser,
void (*#M) (int,int,void*), void *Muser,
int (*dome) (int,double,Chkx*),Chk *conuser){
int n;
double rho, rho_old, omega, alpha, beta, sigma;
B("set userdata",Auser);
A(Gu,Gw,Auser);
B("w=f-w");
M(Gw,Gr,Muser);
B("rO=p=r");
rho = B("dot{r0*r}");
for(n = 1; n<1000; n++){
if(n>1){
rho_old = rho;
rho = B("dot{r0*r}");
beta = (rho/rho_old) * (alpha/omega);
B("p=beta*(p-omega*MAp)+r" ,beta,omega);
} .
A(Gp,Gw,Auser); M(Gw,GMAp,Muser);
alpha = rho/B("dot{r0*MAp}");
B("r -= alpha*MAp",alpha);
A(Gr,Gw,Auser); M(Gw,GMAr,Muser);
omega = B("dot{r*MAr}/dot{MAr*MAr}");
sigma = B("ut+=alpha*p+omega*r; r-=omega*MAr; norm2{r}",
alpha,omega) ; ’
if(done(Amults,sigma,conuser)) break;

]

FIGURE 3. An implementation of BICGSTAB in C, using ad hoc
vector primitives (“BAHS”) rather than BLAS in order to reveal
communication.
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The amount of overlap is known at setup time, so there would be no trouble
allocating fixed buffers. The local solves are expensive enough that one or two
buffers provide sufficient queuning.

The neighbor communication, though it involves scatter/gather references to
memory, deals with fairly small amounts of data. Communication between the
coarse grid process and the fine grid processes for the exchange of coarse grid
data in prolongation and restriction is just the opposite: bulky data in contignous
memory. In the experiments described below, we transmitted the entire coarse
grid to each fine grid process, to avoid the complication of determining exactly
which coarse grid points were really needed.

It may be worth mentioning the size of the communication code, to dispel
the notion that dealing with bare sockets is an overwhelming burden. About
200 lines of C code are involved in providing network connection primitives; the
domain decomposition program proper has about another 300 lines to set up the
connections in the right order and to issue sends and receives. All this is dwarfed
by the grid and discretization modules.

4. Results

Consider a model system of two equations in two space dimensions, derived
from the linearized drift-diffusion equations with one carrier

(4.1) Ay +n=—r
(4.2) noAY + VoV — An = 0.

An appropriate upwinding scheme was used [1]. This captures some aspects of
the coupled transport without the full complexity. For convenient benchmarking,
we discretize on a square domain 2 divided into an 8 by 8 mesh of subdomains €2;.
The typical subdomain has 7 by 7 interior grid points, though subdomains near
89 have fewer grid points; we start with a uniform subdivision of {2 and define
); by “growing” each cell. Neighbors overlap by one mesh line of unknowns.
This yields a total of 4418 fine unknowns. Finally, we overlay a coarse grid with
7 by 7 interior points, for a total of 98 coarse grid unknowns.

Using adjoint as the restriction operator and BICGSTAB as the accelerator,
we measured the wall clock time of program execution on a relatively unloaded
network of uniprocessor workstations, taking the best of three runs. The timings
here are for an experimental code compiled with -g, but we did not observe
any dramatic changes with -0. All workstations had enough memory to avoid
swapping.

A serial version of the program ran in 38.12 seconds elapsed, 37.7 cpu. With
two workstations (and hence one coarse grid process and eight fine grid processes)
our socket-based parallel code ran in 23.6 seconds elapsed time, for a speedup of
1.6. The corresponding time for a pvm-based version of the code was 34.8 seconds,
for a speedup of 1.1. With 4 workstations, our code ran in 13.2 seconds, for a
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TABLE 1. Convergence rate for model problem.

Amults | logyg |[u — u|2 | logie [|[M(f — Au)ll2
3 1.1 -0.4
5 -2.7 -2.9
7 -2.7 -2.9
9 44 -4.4
11 -5.6 -5.6
13 -7.2 -7.2
15 -8.8 -8.9
17 -11.1 -11.1

speedup of 2.9. Because of a bug we were unable to isolate, our pvm-based version
hung after initialization in the four workstation (17 processes) case.

Although we are using relatively small subdomains in this experiment, be-
cause we are solving a system of differential equations and use a complicated
discretization, there is enough computation to mask most of the communication
delay. For a simple Poisson equation that would ordinarily be used in primi-
tive benchmarks like this, the situation is reversed. On the same grid described
above but with one equation (49 coarse and 2209 fine unknowns) with the serial
code we measure 4.5 seconds elapsed; on two workstations we measure 4.0 sec-
onds (speedup 1.13) with the socket-based code, 8.2 seconds (speedup 0.6) with
the pvm-based code; on four workstations, the socket-based code we measure 2.4
seconds (speedup 1.9).

Another way in which these timings are conservative is that for this model,
the cost of matrix setup is rather low. In real codes, it may account for half of
the total execution time, and fortunately scales linearly with processors.

Exactly the same computations are being done in the serial and parallel codes,
and as Table 1 shows the program is converging satisfactorily. Total cpu times
for the 4 workstations were only a few seconds more than the serial cpu time.

Because the domain decomposition preconditioner is so effective, the pre-
conditioned residual ||M(f — Au)|ls is an excellent estimate for the true error
|lv — u.||2, as is apparent from Table 1.

For a more detailed look at the degree of overlap of communication and com-
putation, we profiled the program by inserting gettimeofday calls before and
after each read and write and recorded the size of the message. Elapsed time
increased by factor 1.075. For a small run on two workstations lasting 6 sec-
onds, there were 6112 messages transmitting 372 kilobytes, for an average of
7.6 doubles per message. A schematic drawing of when each process was busy
confirmed our expectations of how processes would be naturally scheduled by
the operating system, and we did not feel the need to tune this further by using
threads instead of separate processes on each processor.

To help the reader avoid one blind alley, we give in Table 2 a cautionary set
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TABLE 2. Number of iterations for different restriction oper-
ators and Krylov methods on a simple Poisson equation on a

square.
BICGSTAB TFQMR

Tyine | fine | adjoint | interp || nfine | fine | adjoint | interp
25 7 5 5 25 6 4 5
81| 11 5 7 81| 11 4 6
280 15 5 7 289 | 17 4 6
1089 | 29 3 71 1089 34 4 6
289 9 7 7 289 9 6 8
841} 11 5 13 841 | 14 5 13
2401 | 23 5 29 || 2401 | 23 4 22
9409 | 37 ) 39 || 9409 | 44 5 39
25 7 7 7 25 7 6 6
49 9 7 9 49 9 6 8
225 15 5 17 2251 16 5 15
961 | 27 5 25 961 | 30 4 31

of intermediate results from our testing. Iterations to reduce the residual by a
fixed factor are given for 1) only fine grid solves; 2) coarse and fine grid with
bilinear interpolation as prolongation and the adjoint as restriction; 3) bilinear
interpolation for both prolongation and restriction. As expected, the number of
iterations increases with n for case 1) and is nearly constant for case 2). The
variational theory depends on using the adjoint as the restriction operator, but
experience from multigrid and elementary considerations of approximation on
unequally spaced grids led us to guess that interpolation as in 3) would be a
good choice. The numerical evidence dashed this hope.

The experiments were all done on uniform fine grids on a square, with three
slightly different ways of defining subdomains and slightly different coarse grids.
The experiments were also repeated with another well-respected Krylov method,
TFQMR [8]. There were no significant differences for this example between
BICGSTAB and TFQMR.

We are pleased with the speedup of 2.9 on four workstations, and look forward
to expanding to a dozen workstations, larger subdomain solves, and additional
work in matrix setup and solution rendering that is known to scale linearly.
We are satisfied with these speedups, and have plenty of other work for any
spare cycles left over because of load imbalance. Happily, domain decomposition
appears to be one of those “essentially independent parallel computations” that
works well for a modest number of workstations on modern networks.
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