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Interpolation Spaces and
Optimal Multilevel Preconditioners

FOLKMAR A. BORNEMANN

ABSTRACT. This article throws light on the connection between the optimal
condition number estimate for the BPX method and constructive approx-
imation theory. We provide machinery which allows us to understand the
optimality as a consequence of an approximation property and an inverse
inequality in H1t¢, ¢ > 0. This machinery constructs so-called approzi-
mation spaces, which characterize a certain rate of approximation by finite
elements and relates them to interpolation spaces, which characterize a
certain smoothness.

1. Introduction

For simplicity we consider the following elliptic boundary problem of second
order on a polygonal domain Q C R2:

—Au+tu=7J, Onulan =0,

where f € L?(2). The weak solution u € H(Q) is given by the variational
problem

(1.1) a(u,v) := (Vu, Vo)r2 + (u,v) 2 = (f,v) 12 Yv € H(Q),

where we use a notation suggestive of the scalar products in L*(Q)? and L2(Q2).
Let 7; be a sequence of nested regular quasi-uniform triangulations of £} with
mesh-size parameter
-hj = max diam(T) = 277.
TET;

Throughout this article we use the notation a < b iff there is a constant ¢ > 0,
such that @ < cb and a = b iff ¢ < b and a > b. The constants ¢ will be
independent of all parameters, except possibly of ) and the shape regularity of
the triangulations.
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Introducing the spaces of linear finite elements
X;={ueCQ):ulr € P(T) VT €T},
where P, (T") denotes the linear functions on the triangle T', we get
XoCX;C...CX;C...C H(Q).
The finite element operator A; : X; — X; defined by
(Aju,v) 2 = alu,v;)  Vu; € X;

should be preconditioned for efficient computation. Thus we seek for an easily
invertible operator B; : X; — X such that A; = B;, ie.,

(Aju, U)L2 ~ (Bju, u)L2 Yu € Xj.
Bramble, Pasciak and Xu [4, 14] constructed the preconditioner

J
Bj = AcQo+ Y _ 45 (Qk — Qr-1),

k=1
where Qy : L?(Q) — X, are the L2-orthogonal projections. They were originally
able to prove without any regularity assumption on the problem (1.1)
(1.2) j—}r—l(Bju,u)Lz S @u)e S G+1) (Buwe  VueX;.
Their proof was based on the observation that
(Aru,u)r2 = 4% |ull?: Yu € range(Qr — Qr_1),
which is a fairly easy consequence of the approximation property
(1.3) v~ Qrullzz S hellullzr Vu € HY(Q)

and the inverse inequality

(1.4) luellen S hgtlluklle Yuk € Xi.

In the case of H'**-regularity of the problem (1.1), 1/2 < a < 1, Xu [4, 14] was
able to improve the factor 1/(j + 1) of the lower bound in (1.2) to (j + 1)1/,

Oswald [10] was the first to observe a strong link of this method of precon-
ditioning to approximation theory, a link which, in fact, immediately supplies a
proof for the optimal result

(15) A= Bj,

without any regularity assumption on the problem (1.1). Several authors have
subsequently added generalizations or constructed more or less elementary proofs
[2, 3, 7, 15, 16]. The aim of this article is to clarify the link to approximation
theory by making available an easily accessible framework. Moreover it will turn
out that the main ingredients of the proof are inequalities like (1.3) and (1.4).
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2. Approximation Spaces are Interpolation Spaces

The optimality result (1.5) would be a straightforward consequence of the
following norm equivalence with scaling exponent 6 = 1:

(2.1) Il = N2+ (25 Ee(w)”  Vue HY(Q),
k=0

where Ej(u) denotes the error of best approzimation in L?($)
Bip(u) = inf [ju—ovpfr2 = lu - Qpullra.
v €EX)

We now ask the rather abstract question: Which sequences X; of nested finite-
dimensional subspaces of L?(f2) allow for some scaling exponent # such that the
norm equivalence (2.1) holds?

Rather than answering this question directly, we define Banach spaces A% —
L?(Q) by the norms given as the right hand sides of (2.1),

o
lullie = rullfs + Y (2 Bu(w)’.

k=0
These approzimation spaces A?, which measure by 6 how well their elements
can be approximated by the spaces X, were introduced by Peetre [6, 11] in
the early sixties and have been intensively studied in approximation theory since
then. It should be mentioned that the results to follow were known in a somewhat
different form to the Russian school around Nikol’skil as early as the fifties.

Our starting question reads now: Is there a 8 such that A° = H'(2)? This

question is a key issue of approximation theory — it requires the characterization
of the approximation spaces through smoothness spaces like the Sobolev spaces.
The answer given by Peetre |6, 11] was a relation between the approximation
spaces A? and the interpolation spaces (L%(S2),X), 2, where X is some “nice”
space with X C X C L*(Q) for all £ > 0.

THEOREM 1. Let a > 0. An approzimation property (Jackson ineguality) Jo,
i.e.,

(2.2) lu— Qrullze S27*lullx  VE>0,u€ X,
implies the embedding

(LZ(Q),X) ,o AT 0<o<L

ol!

Let 8 > 0. An inverse inequality (Bernstein inequality) Bg, i.e.,
(2.3) Nullx < 2%Plluklle Yk = 0,u; € Xg,
tmplies the embedding

A8 (Lz(n),x)a2 0<o<l.

3
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REMARK 1. Note that a standard interpolation argument applied to the Jack-
son inequality J, for X and to the trivial estimate ||u — Qxul|z2 < |ju|z2 would
only reveal an approximation property for the interpolation spaces

(24) 2% llu — Qrullr2 S ulle). %),  0<o <1

This result would be considerably weaker than the assertion of Theorem 1, which
states that the right hand sides of (2.4) are in fact square summable as a sequence
of k.

If we use an appropriate method for the construction of the interpolation
spaces (L2(Q), X)o,2, the proof of Theorem 1 is simple. We demonstrate this for
the first part concerning the Jackson inequality.

Proor. Fix some 0 < A < 1. Using the discrete version of Peetre’s K-method
of interpolation [1, 6, 13] we get

ko 2
lullzaoy,x),0 = 2 AT KOF,0)".
keZ

The following estimates relate the K-functional with the error of best approxi-
mation by using the Jackson inequality J,: For all £ > 0

Bew) < inf Jlu— Quollss
< inf (e — oz + o — Qe z2)

Jg}fg (flu~ vl + Z—kaﬂvﬂx) =: K(27%, v).

A

Thus, by making the choice A = 2™%, we end up with

o0

o 2
lelifzs@y, .2 2 D (2 Ex(w)” + llullfs = fullfes.
k=0

|

Let us note that the discrete version of Peetre’s J-method of interpolation
{1, 8, 18] turns out to be appropriate for the proof of the second part of the
Theorem.

COROLLARY 1. The approzimation property is restricted by the inverse in-
equality, i.e., Jo and Bg imply a < B. For o = [ we get the identification

A% = (LZ(Q),X) ,  0<o<l

a,

PROOF. If J, and B hold, Theorem 1 gives A°% < A47° for 0 < ¢ < 1. This
embedding is equivalent to o < 3, as can easily be shown. [
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3. Application to Linear Finite Elements

In order to answer the question from the beginning of our consideration, Corol-
lary 1 leads us to the following strategy: Choose X and 0 < ¢ < 1, such that

HY(Q) = (LZ(Q),X>

a,

In any case this requires that X is smoother than H(f). Interpolation theory
in Sobolev spaces [13, 1] states for minimally smooth domains Q (i.e.,  allows
a continuous extension operator E : H*(Q) — H*(R?) for all s > 0), that

HY(Q) = (L?(Q),HS(Q)) Vs> 1.
1/s8,2
In our context it suffices to know, that a polygonal domain Q without slits is
minimally smooth [12]. Now it turns out, that the finite element spaces fulfill
X CH?(Q) == 0<s<3/2

For the following we fix some 1 < s = 1+ ¢ < 3/2 and we can apply Theorem
1 — as soon as we have established an approximation property and an inverse
inequality in H'*¢. We obtain the approximation property J;, i.e.,

(3.1) lu — Qrullze S hillullee S 27%llullzs  vu e H (),

by simple interpolation between the cases s = 0 and s = 2, as indicated in
Remark 1. A little bit deeper lies the inverse inequality B, i.e.,

(3.2) luellms S R lluellce S 2% llullze Vur € X,

which can be proved using the Sobolev-Slobodeckii norm

— V()2
fullnse =l + [ [ T =THOF g

of H*(?), cf. [5]. Thus we have @ = # = 1/o and Corollary 1 states the
equivalence, which makes the BPX preconditioner optimal:

THEOREM 2. For linear finite elements the equivalence A* = H(R) holds.

REMARK 2. This Theorem and the more general equivalence “approximation
space = smoothness space”, i.e, A* = H*(Q) for s from some interval, holds
generically for a lot of sequences X, like higher order finite elements, spectral
methods and wavelets. Details can be found in [8, 9].

Qur considerations show that it is reasonable to view the approximation prop-
erty (3.1) and the inverse inequality (3.2) in H*¢(Q), € > 0 arbitrarily small, as
the “chief cause” for the optimality of BPX. In the original proof of the weaker
result (1.2) corresponding estimates in H'(£2) were the groundwork. Thus, the
essential step is to use the fact that linear finite elements are a little bit smoother
than one usually thinks. This essential step is hidden in one way or another in
all proofs [2, 3, 7, 10, 15, 16] of the optimality of the BPX preconditioner.
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REMARK 3. The reader should not confuse the concept of regularity X; C
+¢ of the approximating spaces X; with the concept of H'**-regularity of the

problem (1.1). The first is a general property of the method of approximation,
the second holds only for special cases of the underlying problem.
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