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Two-level Additive Schwarz Preconditioners
for Nonconforming Finite Elements

SUSANNE C. BRENNER

ABSTRACT. Two-level additive Schwarz preconditioners are developed for
the nonconforming finite element approximations of second order and fourth
order elliptic boundary value problems. The condition numbers of the
preconditioned systems are shown to be bounded independent of mesh sizes
and the number of subdomains in the case of a generous overlap.

1. Introduction

We generalize the Dryja-Widlund theory of two-level additive Schwarz precon-
ditioners (cf. [4], [5] and [9]) to nonconforming finite element approximations of
second and fourth order elliptic boundary value problems. Compared with con-
forming finite elements, the nonconforming finite elements have fewer degrees
of freedom. The trade-off is that the communication between grids of different
sizes is more complicated. The intergrid transfer operators must be constructed
carefully. We show that under certain assumptions there is a uniform bound on
the condition numbers of the preconditioned systems. Defails and proofs of the
results can be found in [1]. Recent works on domain decomposition methods for
nonconforming finite elements can also be found in [3], [6] and [2].

2. The Preconditioner

The construction of the preconditioner is based on the idea of domain de-
composition. Let {2 be a bounded polygonal domain in R?, Write O = U;-’___lﬂj
as a union of overlapping subdomains. 7y is a triangulation of {2 and 7}, is a
subdivision of 7y which is aligned with each 99;.
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We assume that there exist nonnegative C* functions 8y, 6s,... ,0; in R?
such that (G1) 6; = 0 on Q\Q;, (G2) 37_, 6, = 1 on §, (G3) |V8;z~ < §
and [|V20;|lz~ < —607, and (G4) Each point in Q can belong to at most N,
subdomains. (Here § measures the size of the overlap and V2 is the Hessian.)
These are the geometric assumptions. Note that from here on the generic positive
constant C is independent of h, H, §, J and N..

Let V3, (vesp., Vir) be the finite element space associated with 7;, (vesp., Tg)
and let V; = {v € V,, : v = 0 on Q\$;}. (We only treat homogeneous Dirichlet
boundary conditions.) The existence of the partition of unity implies that Vj, =
E}I=1 V;. Let ap(-,-) (resp., ap(,-)) be a positive-definite symmetric bilinear
form on Vj, (resp,. Vi).

We will describe the preconditioner in operator notation (cf. [8]). We assume
that (-,-)s and (-,-)g are inner products on V}, and Vg respectively. The oper-
ators Ap 1 Vi — Vi, 4; 1 V; — V;, Ag : Vg — Vi, Q; : Vi, — Vj and
P; : V, — V; are defined by

(Apv, w)h = ah(’“:"”)? (Ajv’ w)h = ah("),w)a
(AH'U"LU)H = a’H('U,'w)a (ij7w)h = (an)ha
ar(Pju, w) = ap(v,w).

These operators are related by the equation A;P; = Q, A4,

Let I 1’31 : V& — V}, be the coarse-to-fine intergrid transfer operator (the con-
struction of I for some concrete applications are given in Section 5). The fine-
to-coarse intergrid transfer operator I ,If : Vo — Vg is defined by (Ifv,w)ny =
(v, Iw)y, and the operator P¥ : Vi, — Vpg is defined by ay(PHv,w) =
an (v, Ihw). These operators are related by the equation Ag P = I/ A,.

Furthermore, we assume that we have approximate solvers Ry ~ AI—{I on
the coarse grid and R; ~ AJ-‘1 on each subregion, and that these operators are
symmetric positive-definite with respect to the inner products (-,-)z and (-, ).

The preconditioner is defined by

J
B:=I}Rplf +) R;Q;.
J=1

The discretized problem is Apu, = f, and the preconditioned system is
BApu = Bfpn. Using the relationships among the operators, we can write the
operator for the preconditioned system as:

J J
BAy =IERuIf A+ R;Q;An=IiRuAuP + R A;P;.

F=1 j=1

It is easy to see that BA, is symmetric positive-definite with respect to ax(-,-).
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If we use exact solvers, i.e., if Ry = Agl and R; = Aj'l, then

J J
BAn=IRPY + Py = INAF I Ay + > B,
=1 =1
which shows that our preconditioner is a variant of the Dryja-Widlund precon-
ditioner (cf. [6]).

3. Examples
EXAMPLE 1. Dirichlet problem for the Laplace equation:
~Au= fin Q, ulag = 0.

We use the bilinear form ap(vi,v2) = Ypeq Jr Vo1 - Vozdz Vuy,vs € W,
where V}, is the nonconforming P1 finite element space {v € L?(Q) : v €
P1(T) VT € Tj,v is continuous at the midpoints of interelement boundaries,
and v vanishes at the midpoints along 8Q}. On the coarser grid we have two
choices: nonconforming P1 finite elements and conforming P1 finite elements.
Our theory is applicable to both choices.

EXAMPLE 2. Dirichlet problem for the biharmonic equation:
A%w=finQ, u=g—$=00n6§2.

We use the bilinear form ap(v1,v2) = Y oper, Jr ZﬁFl 5%?-{?;;; -ég:-gg; dz Vwvi,v
€ V},, where V4, is the Morley finite element space {v € L?2(Q) : v € Po(T) VT €
T;,,v is continuous at the vertices and vanishes at the vertices along 8¢1, —g—;’;
is continuous at the midpoints of interelement boundaries and vanishes at the
midpoints along 0Q}. Here we must use nonconforming finite element spaces on
both grids since the Morley finite element space does not contain a conforming

subspace.

4. An Abstract Theory

In what follows, k is a parameter which takes the value 1 (resp., 2) for second
(resp., fourth) order problems. We use the nonconforming semi-norms
1/2

1/2
[l grm (7 = (Z !?f!%m(:r)) and |olgni )= Y Pfhme

TeT: et e
&n TET)

We make two assumptions on the variational forms:

(V1) Van(v,v) ~ Polaxg),  Veu,v) ~ lge )

(V2) ap{v,w) £ C%‘Gigk(ﬂhj) iwxﬁk(g;‘) Vv €V, we V.
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We need two properties on the coarse-to-fine intergrid transfer operators:

(11) ]I?ITJIHk(Th) < C"U'Hk(TH) Vv €Vy -and
(12) [Py — vlge(r,) < cH |v|gr(zyy Yv € Va,
0<f<k-1.

LeMMA. Under assumptions (V1)-(V2), (I1) and (G4),
Amax(BAr) < Cwi N,
where wy := max(p(RgAm), p(R141),... ,p(RsAJ)).

To obtain a lower bound for the eigenvalues of BA; we need a connection
operator K : V}, — Vg which satisfies the following properties.

(Kl) IKEUIH’“(TH) < C"U{Hﬂc(j’h) YveV,
(K2) [K}{{’U - 'U]Hf(’TH) < CH+* |UIH’”(Th) Vv &V,
0<i<k-1.

We also assume that the nodal interpolation opertor II;, satisfies
(P1) [Ih (M) meery <C [Mv]ge(ry and
(B2) [ Wu(gv)llzzcry <C(llglloosry+(k = 1) B IVl el acry
for all T’ € Tp, v € P(T) (the space of shape functions), A € Py_,(T),g € C=(T).

LEMMA. Under the assumptions (P1)-(P2), (V1), (K1)—~(K2), (I11)-(12),
(G1)—(G4), given any v € Vj, there exist vg € Vi, v; € V; (1 < j < J)
such that

J
vzlﬁvo-{—Zvj and
j=1

J H\ 2*
ax(vo, vo) +Zah("’javj) <CN, (1+ (—5—) ) an(v,v).
=1

It is well-known (cf. [8]) that such a lemma implies that we have the following
lower bound for the eigenvalues of BA,,.

LEMMA. o
’\mz'n(BAh) >C N 2

T+ B
where wy = min{ Ay (R An), Apin(R141), ..., Amin(RiAD))
Putting everything together, we obtain the bound for the condition number.
THEOREM. Under the assumptions (G), (V), (I), (K), and (P), we have

Amax(BAn) Wi (H )%
T <C—N: {14+ (= }
’\min(BAh) wWo 6
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COROLLARY.
Amaz(BAp)

)‘min(BAh)
fwr<Ci, w>2Cr>0, &<

< CN?

In the case of a small overlap, the factor [1 + (H/§)]* can be reduced to
[1+ (H/6)]® by adopting the arguments in [7] (cf. [2]).

5. The Operators I% and K

We use related nested conforming spaces Wy and W), in the constructions of
the intergrid transfer and connection operators. We define I% and KF by the
following commutative diagrams, where 7 is the natural injection.

Vi W, Vi —2s W,
5 b e
Em Fyr

Below we describe Wy, Wh, E;, Eg , Fp, Fg and QhH for the two examples in
Section 3.

The P1 Nonconforming Finite Element. We take W), to be the con-
forming P2 finite element space {w € C(Q) : w|r € Po(T) YT € T, and w =0
on 00}. The space Wy is defined similarly. Note that the nodal variables of
the nonconforming P1 space are also nodal variables of the conforming P2 space.
The operator Ey, : V;, — W}, is defined by

{ (Brv)(m) = v(m)
(Erv)(p) = average ofvi(p)
where v; = v|z, and T} € 7}, contains p as a vertex, and the operator F), : W, —
V4, is defined by
(Frw)(m) = w(m).
The operators By : Vg — Wy and Fy : Wy — Vg are defined similarly.
The operator Qf : W), — Wiy is the L?-orthogonal projection.

The Morley Finite Element. We take Wh to be the P5 Argyris finite

element space {w € C1(Q) : w|r € Ps(T) VT € Tp, D*w is continuous at the
vertices for |a| = 2 and w = 22 = 0 on 82}, which is contained in the larger
space Wy, = {w € C*(Q) : wlr € P5(T) VT €Th,w=% =00n 652} The
spaces Wy and Wy are defined similarly. The operator Ep : V3, — Wi C Wy
is defined by

(Env)(p) = v(p)

(8*Eyv)(p) = average of (8%v;)(p),|a| =1

(8°Env)(p) = 0,]af =2

(ZBnv) (m) = 33 (m)
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where v; = v|7, and T} contains p as a vertex, and the operator Fj, : Wy — Vj,
is defined by
{ (Frw)(p) = w(p)

(& (Fhw)) (m) = 32(m)
Again, QF : W), — Wy is the L?-orthogonal projection.

The estimates (I1)—(I2) and (K1)—(K2) are obtained from the corresponding
estimates of Ey, Fyg, Fy, Fi and QhH .

6. Stationary Stokes Equations
Our theory can also be applied to the stationary Stokes equations
~Au + gradp=f in{}
divu=0 in{
u=0 ondQ

using the divergence-free P1 nonconforming finite element. The main difficulty is
the divergence-free constraint. It can be circumvented by the connection between
the divergence-free P1 nonconforming finite element space and the Morley finite
element space (cf. [1]).
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