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Two Proofs of Convergence for the Combination
Technique for the Efficient Solution of Sparse Grid
Problems

H.-J. BUNGARTZ, M. GRIEBEL, D. ROSCHKE, AND C. ZENGER

ABSTRACT. For a simple model problem — the Laplace equation on the unit
square with a Dirichlet boundary function vanishing for x = 0, z = 1, and
y = 1, and equaling some suitable g(x) for y = 0 — we present a proof
of convergence for the combination technique, a modern, efficient, and easily
parallelizable sparse grid solver for elliptic partial differential equations that
has recently gained importance in fields of applications like computational fluid
dynamics. For full square grids with meshwidth h and O(h—2) grid points, the
order O(h?) of the discretization error using finite differences was shown in [5],
if g(z) € C?[0,1]. In this paper, we show that the finite difference discretization
error of the solution produced by the combination technique on a sparse grid
with only O ((h“1 logz(h“l)) grid points is of the order O (h2 log, (h’"l)) , if
the Fourier coefficients by, of g, the 2-periodic and 0-symmetric extension of g,
fulfill |bg| < ¢g - k=3¢ for some arbitrary small positive £. If 0 < ¢ < 1, this
is valid for g € C*[0,1] and g(0) = g(1) = g"(0) = g"(1) = 0, for example. A
simple transformation even shows that g € C%[0,1] is sufficient. We present
results of numerical experiments with functions g of varying smoothness.

1. Introduction

Since their presentation in 1990 [7], sparse grids have turned out to be a very
interesting tool for the efficient solution of elliptic boundary value problems. Besides
the implementation of a hierarchical finite element algorithm on sparse grids [1},
it has been first of all the combination technique [4] that attained attention in
the sparse grid context. One of the main advantages of the combination technique
stems from the properties of sparse grids [1]: In comparison to the standard full grid
approach, the number of grid points can be reduced significantly from O(N?) to
O(N(logy(N))?~1) in the d-dimensional case, whereas the accuracy of the calculated
approximation to the solution is only slightly deteriorated from O(N~2) [5] to
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O(N~?(logy(N))41) [1, 4]. Additional advantages have to be seen in the simplicity
of the combination concept, in its inherent parallel structure, and in the fact that
it is a framework which allows the integration of existing PDE solvers. Up to
now, the combination technique has been applied to several types of elliptic PDEs
including problems originating from computational fluid dynamics. Its excellent
parallelization properties have been verified on different parallel architectures and
on workstation networks (see the references in [3]).

For a proof of the approximation properties mentioned above, in the 2D case the
existence of an error splitting of the type

(1) un, n, (2,y) — ulz,y) = Ci(z,y, hz)h2 + Co(x, y, by)h2 + C(2, Y, ha, hy)B2H

with |Cy(z,y, k)|, |Ca(z,y, hy)|, and |C(z,y, by, hy)| bounded by some positive
B(z,y) for all meshwidths h, and h, has to be shown [4]. Here, u(z,y) is the
exact solution of the given boundary value problem, and up, »,(z,y) denotes the
solution on the rectangular full grid with meshwidths h, and h, resulting from a
finite difference discretization.

We present two proofs for the existence of such an error splitting in the case of
Laplace’s equation on the unit square, if the Dirichlet boundary function satisfies
certain smoothness requirements. Both times, we first split the discretization error
Uhg by (%, y) — u(z,y) into three error terms also involving the solutions up, o and
up,n, of the Laplacian discretized in only one direction. Then, the first approach
represents these error terms (differences) as integrals over differential quotients and,
thus, reduces statements on u, n,(2,y) — u(z,y) to statements on some partial
derivatives of u(x,y) and up, p, (2, y). The second proof works in a more straight-
forward way using the mean value theorem to get derivatives instead of differences.
Here, we just outline the essential steps. For details, see [2] and [3].

2. The Combination Technique

Let L be an elliptic operator of second order. Consider the partial differential
equation Lu = f on the unit square 2 =]0, 1[> with appropriate boundary condi-
tions. Furthermore, let G; ; be the rectangular grid on ) with meshwidths h, := 2~°
in z- and hy, := 277 in y-direction (¢, 7 € IN). In [4], a technique has been introduced
which combines the solutions up,, 5, of the discrete problems Ly_ 5, Uhy by = Thoihy
associated to Lu = f on different rectangular grids G; ;:

(2) ul, = Z Up—i g7 — Z Ug—i 9.

itj=ntl i+j=n

The resulting solution «S is given on the sparse grid G, ,, with O(2"n) grid points
instead of the usual full grid G, with O(4") points. Fig. 1 shows the sparse grids
Gs3 and C~7’4,4. For a detailed introduction to sparse grids, see [7] and [1]. Note
that we have to solve n different problems with O(2"*1) grid points (i+j = n+1)
and n — 1 different problems with O{2") grid points (i + j = n). These 2n — 1
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FIGURE 1. Sparse grids G3 3 and Gy 4.

problems are independent from one another and can be solved in parallel. Finally,
their bilinearly interpolated solutions are combined according to (2).

Assuming that, for each inner point (z,y) € {, the pointwise error of the solution
Uh,,h, = Ug—io-; Obtained on the rectangular grid G; ; is of the form (1), it has
been shown in [4] that the error €S (x,y) of the combined solution S (z,y) fulfills

() lesl@y) = hi(m) ~ulm)l < Blo,y)-hl- (1+ 7 logy (k7))

where h,, = 27", In this paper, we deal with the question of which smoothness
requirements have to be fulfilled by the Dirichlet boundary function in order to get

a behaviour of the error up, h, (%, ) — u(z,y) on G;; as indicated in (1).
For the remainder, we concentrate on the Laplace equation

(4) Au(may) =0, (m,y) € Qa
with the Dirichlet boundary condition

: (@): (z,y) €60,y=0
) u(z,y) = { 90 : (z,y) € 6Q,y > 0.

Throughout the paper, we assume that the Fourier coeflicients by, of §, the 2-periodic
and O-symmetric extension of g, fulfill

1
= ’2 /0 g(z) sin(krz)dz| < kgis

(6)  lbkf =

/ ' §(x) sin(knz)dz
-1

for some arbitrary small positive € and a constant ¢, depending only on g. For
0 <¢e<1,eg,; it is a well-known fact from Fourier theory that (6) is valid if

§ € C4R) or if g € C*[0,1] and g(0) = g(1) = ¢"(0) = ¢"(1) = 0.

3. Explicit Solutions and Error Splitting

In this section, we are looking for explicit representations of the solutions u,
Wk, by > Uhg,0, 80 Ugp, of the Laplace equation (4) and the following three associ-
ated discretized problems with meshwidths h, = 27" and hy = 277:
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Uhg by (T — hayy) — 2un, b, (T,Y) + Un, p, (z + b, y)
hZ
(7) 4 Unehy (z,y — hy) — 2un, n, (T, Y) + Un, b, (T, Y + hy)
h2 ’
y

82uhm ,0 (xa y)
Sy ’

8 0= uhz,o(z‘—hz,y)—2Uhm,f?2(w,y)+Uhm,o(w+hx,y) N
z

*uo,n, (,y) 4 Yoy (z,y — hy) — 2uo,n, (2, y) + vo,n, (T,y + hy)

9 0= oz h2

Thus, up, n, solves the discrete problem resulting from the use of central finite
differences in z- and y-direction. Accordingly, us, 0 and w5, denote the solutions
of the problems discretized only in z- or in y-direction, respectively. Defining
sinh(tr(1 — y))

sinh(tr) °
we know from [6] that the solution u of (4) fulfilling (5) can be written as

(10) T(ty) =

(11) u(z,y) = Z by, sin(krx)T(k, y).
k=1

As shown in [3], the three discrete problems (7)—(9) are solved by

o0

(12) Ung by (B, Y) = Z by sin(kmz)T (1k, ¥),
k=1
oC

(13) Un, o2, y) = Zbk sin(kmz)T (vk, ),
k=1

(14) Yo, (@y) = Y besin(krz)T(A,y),
k=1

where

pr(hg, hy) = 2 - arcsinh (@ - sin (kﬂhm)> ,
(15) Thy hg 2

vg{hg) = hlhixouk(hz,hy); Ai(hy) = hlimouk(hz,hy).
Y I

In each sum (12}, (13), and (14), sin(knz)T'(.,y) solves the corresponding problem
(7), (8), and (9), respectively. The series converge, because T'(¢,y) < 1 and because
of our smoothness assumptions (6). Furthermore, up, x,, s, 0, and ug,, fulfill the
same boundary condition (5) that u does. This results from the fact that we always
use the Fourier coeflicients b, of the continuous problem.

Now, we use the explicit representations of u, up, n,, Un,,0, and Ug,h, to split
the discretization error up, 5, — u into three terms:

(16) Unany =0 = T + T +Th, i,
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where

1) (2)

P( = Up,0— U T = —u
(17) hg 2 5 ’ hy 0,k 3
Dhashy = Uhg,hy — Ung,0 — Uo,h, + U.

In the following, we show that the smoothness requirement (6) is sufficient for
]-—15;) = hi : Cl(may7hm)v P;,,zy) = h:lzl : 02($’y, hy):

Fha.-,hy = hg:h’z : C($7y) ha, hy) )
to hold, where |C1], |C;|, and |C| are bounded from above by some B(z, ).

(18)

4. Order of the Error Terms

We restrict ourselves to I'y, »,. Looking at the explicit representations (11)-(14)
of u, up,,0, Uo,n,, and Uh,,h,, We see that I' 5 can be written as a series, too:

(19) I‘hm,hy = i bk sin(k'/r:z:) ) (T(M/cv y) - T(V’m y) - T(Ak; y) + T(k1 y)) .
k=1

Here, the crucial task is to transform the differences in (19) to derivatives, since
the latter ones are easier to deal with. We study two possible ways of doing so.

For the first approach, we note that s, = 3720 2 re_( Thy-2-1,h,-2-m, Where
Vharhy = Uhg,hy = Uhg, hy/2 ~ Yhy/2,hy + Uk, /2,h,/2- Then, introducing v(z, y, s,1) =
Ug—s 9t (2, y) for arbitrary s,¢ > 1, we get

it 92y(2,y, 0,7)
20 = Yp-igej = ——22 " ‘dodr.
( ) Yoz by Yo-i2-i ‘/z /J Bodr odT

In a last step, we have to find estimates for the partial derivative 32'26117" This can
be done profiting from the tools of symbolic computation (see [2] for details).

The second proof starts with studying properties of T', vg, A, and iz introduced
in (10) and (15). As a result, applying the mean value theorem twice, we get

T(px,y) — Tk, y) — T(Ax,y) + Tk, y)
o (e Flm)|, by 0B,

where F(t,h) := arcsinh(th)/(h%), & € [vi, k[, and a € ]0,1]. Finally, we have
to find bounds for the occurring partial derivatives of T" and F' (see [3] for details).

5. Numerical Experiments

We present some numerical results for the Laplacian on Q =0, 1[?> with Dirich-
let boundary conditions and the solutions w(®(z,y) = Im((z -} +iy)®) and
u(z,y) = sin(wy)-sinh(7(1—z))/sinh(r). Here, o indicates the smoothness of u(®)
at the critical point (3,0). If, e.g., o > 4, then u(®(z,0) € C*([0,1]). Note that
these examples can be reduced to the situation of (4), (5). For the discretization on
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FIGURE 2. Decrease in €2 (P)/n proceeding from level n — 1 to level n.

the full grids G; ;, we used finite differences as indicated in (7). The resulting sys-
tems were solved with the help of the NAG library routine DO3EDF written by P.
Wesseling (see [3] for details). Fig. 2 shows the decrease in ef, (P)/n proceeding from
level n — 1 to level n for our examples. Here, €S (z,y) = u{z,y) — uS(z,y) denotes
the error of the combined solution, and P := (3, ). We see the O(h2 logy(h;"))-
behaviour for a € {1.5,2.5,3.5} and for » and a worse convergence if o < 1.
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