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Domain Decomposition Methods for Monotone
Nonlinear Elliptic Problems

XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA

ABSTRACT. In this paper, we study several overlapping domain decompo-
sition based iterative algorithms for the numerical solution of some non-
linear strongly elliptic equations discretized by the finite element methods.
In particular, we consider additive Schwarz algorithms used together with
the classical inexact Newton methods. We show that the algorithms con-
verge and the convergence rates are independent of the finite element mesh
parameter, as well as the number of subdomains used in the domain de-
composition.

1. Introduction

Schwarz type overlapping domain decomposition methods have been studied
extensively in the past few years for linear elliptic finite element problems, see
e. g, [2, 4, 5, 11, 9]. In this paper, we extend some of the theory and methods
to the class of nonlinear strongly elliptic finite element problems. The first
study of the classical Schwarz alternating method for nonlinear elliptic equations
appeared in the paper of P. L. Lions [14], in which the class of continuous
monotonic elliptic problems was investigated. There are basically two approaches
that a domain decomposition method can be used to solve a nonlinear problem.
The first approach is to locally linearize the nonlinear equation via a Newton-like
algorithm and then to solve the resulting linearized problems at each nonlinear
iteration by a domain decomposition method. The second approach is to use
domain decomposition, such as the Schwarz alternating method, directly on the
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nonlinear problems. In this case, a number of smaller nonlinear problems need
to be solved per domain decomposition iteration. In this paper, we focus on the
first approach. We show under certain assumptions that the mesh parameters
independent convergence can be obtained. Certain related multilevel approaches
can be found in [1, 16].

Let Q2 C R%(d = 2,3) be a polygonal domain with boundary € and a(u,v) =
(Vu, Vv) 12y Here u,v € V, and V3 is the usual triangular finite element sub-
space of HE(Q)(inner product a(-,-) and norm || - ||, = a(-,-)*/?) consisting of
continuous piecewise linear functions. Following the Dryja-Widlund construc-
tion of the overlapping decomposition of V3 (cf. [11]), the triangulation of Q is
introduced as follows. The region is first divided into nonoverlapping substruc-
tures §;, i = 1,--- , N, whose union forms a coarse subdivision of 2. Then all
the substructures §2;, which have diameter of order H, are divided into elements
of size h. The assumption, common in finite element theory, that all elements
are shape regular is adopted. To obtain an overlapping decomposition of the
domain, we extend each subregion ); to a larger region Q;, ie, Q; C Q; We
assume that the overlap is uniform and V; C V}, is the usual finite element space
over Q,; Let Vo C V}, be a triangular finite element subspace defined on the
coarse grid. It is clear that Q =, Q; and V =Vo+---+ Vy.

Base on the decomposition of V}, discussed above, we introduce and analyze
some algorithms for the finite element solution of the following quasilinear elliptic
problem with Dirichlet boundary condition:

d .
0
Lu= '—E - -a?iai(:v, u, V'U:) + ao(l‘,u, VU) = f(fB)

The corresponding variational problem reads as following: Find u* € V},, such
that

(1) b(u*,v) = (f,v) YveW,

where

O
oz, + ao(z, u, vu)v) dz.

d
b(u,’u):/n (Zai(w,u,vw

i=1
The existence and uniqueness of the continuous problem are understood un-
der cértain assumptions, see e.g., Ladyzhenskaya and Ural'Tseva {18]. Let
a’i(waPO)phPZ) = a’i(xsysuw7uy)7 p = (pO)p17p2) and p, = (p17p2)' The ba-
sic assumptions are, for some positive constants ¢ and C,
(A1) a; € CY(Q x R3);
(A2) max{ lasl, —g—;—% g;; } <C,for ,k=0,---,dyandj=1,---,d;

(A3) the operator is strongly elliptic; i.e.,

2

d

. d
3 da@R) e > S e,

4,7=0 Op; i=0



NONLINEAR ELLIPTIC PROBLEMS 23

As a direct consequence of assumptions (A1-3), we can prove the following
lemmas, which will be used extensively in the convergence analysis in the sub-
sequent sections of this paper.

LEMMA 1. The functional b(-,-) : H () x H}(Q) — R satisfies the strong
monotonicity condition, i.e., there ezists a constant ¢ > 0, such that for any
u,v € Hi(Q),

(2) b{u, u — v) — b(v,u — v) > clju — v}
or, equivalently, for any v,z € H}(f),
o+ 7,2) — bv,2) > el .

LEMMA 2. The functional b(-,-) is uniformly bounded in the sense that there
exists a constant C > 0, such that

(3) [6(u, w) — b(v, )| < Cllu — vllafjwla,
Jor any u,v,w € H} ().

Let Vi = span{¢y,---,¢n} and the finite element solution u* = 37 u;¢;.
Define :

bi(ug, - ,up) =b Zuj¢j7¢i o fi=(f40)
=1
B = (b, ,b,)T and § = (f1,--- , fu)T. The rest of the paper is devoted to
the solution of the following nonlinear algebraic equation

4) G(u) = B(u) - f = 0.

Here and in the remainder of the paper, we use u (or v, w, 2) to denote either
a function in V}, or its corresponding vector representation in terms of the basis
functions, ie., u = (u1,...,us)" € R" and u = 3 -, u;; € Vi,. We consider
the well-known Newton-like method [7].

2. A Simple Poisson-Schwarz-Newton Method

In this section, we discuss a simple algorithm that combines the Schwarz pre-
conditioning technique with a Newton’s method. The preconditioner is defined
by using the Poisson operator( i.e., using a(,-)), which generally has nothing to
do with the nonlinear problem to be solved. We show that with a properly cho-
sen relaxation parameter ) the algorithm converges at an optimal rate, which is
independent of the mesh parameters. The involvement of the parameter A makes
the algorithm not very practical, but nevertheless, it provides some theoretical
insight to the preconditioning process.

For each subspace V;, let us define an operator @; : Vj, — V;, by

a(Qi(u),v) = b(u,v), Yu€ Vs, veV,.
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Q:(u) can also be understood in the matrix form Q;(u) = RT A;*R;B(u), where
A; is the subdomain discretization of a(-,-) and R; : V;, — V; is a restriction
operator, [3]. To define the additive Schwarz method, let us define

RQ=Q+1+ - +Qn.

‘We note that the operators @; and @) are not linear in general. We shall show
that the following nonlinear equation

(5) G(u)= Q) — =0

has a unique solution, and is equivalent to equation (4), i.e., they have the same
solution. Here the right-hand vector § = Zﬁig §i, and g§; = Q;u*. These §; can
be pre-computed without knowing the exact solution u*, as illustrated in [11].
Let us define

N N -1
M=) "RTA;'R;and M = (Z RfAi‘lRi) :
i=0 =0

From the additive Schwarz theory of Dryja and Widlund [11], we understand

that M is symmetric and positive definite and the norm generated by M (|- ||ar)
is equivalent to the norm | - ||,.

ALGORITHM 1 (ADDITIVE-SCHWARZ-RICHARDSON). For a properly chosen
parameter A, iterate for k = 0,1,--- until convergence

bt = oF 4 AsF,
where ¥ = —~G(uF) = —M~1G(u¥).

We note that the algorithm can also be written as u*+! = u* — X (Q(u*) — §) .
The following technical lemma plays a key role in our optimal convergence theory.

LEMMA 3. There exists two constants &y and 61, such that

(6) (Qu+2z) — Q(u),2)y, > bollzll3s, Vu,z € W,
and
(M 1Q(u +2) — Q)3 < &illzll3s, Vu,z € Vi,

The optimal convergence of the Algorithm 1 is stated in the main theorem of
this section.

THEOREM 1. If we choose 0 < A < 28¢/51, where 8y and 6, are both defined
in Lemma 3, then Algorithm 1 converges optimally in the sense that

(®) lu* —u*lla < Cp*u® — w|la

Here p? = 1—-)61(260/61—X) < 1 and C are independent of the mesh paramenters
h and H. The optimal Aopt = 80/61 and p2,, =1 — 62/6:.
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3. A Newton-Krylov-Schwarz Method (NKS)

In this section, we study an outer-inner iterative method for solving (1). Clas-
sical Newton is used as the outer iterative method, and a Schwarz preconditioned
Krylov subspace method is used as the inner iterative method. We prove that un-
der certain conditions that if the number of inner iterations is sufficiently large,
then the outer iteration converges at a rate independent of the finite element
mesh parameters, and the number of subdomains.

At each point u € V;,, let us define

N
M5(u) = Y RIL7 (w)R;,

i=0
as the additive Schwarz preconditioner corresponding to the Jacobi operator L(u)
of B(u). Here L; ! (u) is the inverse of L(u) in the subspace V; and R; : V;, = V;
is the restriction operator. To solve for the kth Newton correction, we use ny,
steps of a Schwarz-preconditioned Krylov subspace iterative method with initial
guess v° = 0. Let F}, be the iteration operator, i.e., at the /th Krylov iteration,
the error is given by

(9) vt —v = Fr(v° —v).

Or, equivalently, we have v = (I — F};)~'v!. For the simplicity of presentation,
we replace the Krylov iterative method by a simpler Richardson’s method. The
operator Fy has the form

Fio(ug) = (I — Mz (ur)Llwi))'

where the 7 are relaxation parameters. We assume that the operator Fj is
bounded, i.e., there exists a constant 0 < p; < 1, such that

(10) 1Fxlla < pr-

The estimate (10) is satisfied for a number of Krylov space methods, such as
GMRES [15]. In the rest this section, we study the convergence of the following
NKS algorithm.

AvrcoriTHM 2 (NEWTON-KRYLOV-ADDITIVE-SCHWARZ ALGORITHM). For any
given ug € Vy,, ilerate with k = 0,1, ... until convergence

(11) L{ug)(I = Fr) ™ (wrs1 —ur) = —B(we) + /.

In practice, a damping parameter can usually be used in each outer iteration
to accelerate the convergence of the Newton method. The parameters can be
selected by using either a line search or a trust region approach, see e.g. [7]. Since
we are interested mostly in theoretical aspects of the algorithm, the selection of
parameters is omitted from its description.
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Before giving the main result, we present a few auxiliary lemmas. Let A =
{a(¢i, &)}, 4,5 =1,---n. We assume that L(u) satisfies the Lipschitz condition,
ie.,

1 L(u) — L(v)l a2 < vlu— v]|4.

LEMMA 4. There exist two constants ~yg and 7y, such that for any v,w € V3,

(12) a(L™ (w)w, L™ H(v)w) < ya(A  w, A7 w)

and

(13) a(A " L(v)w, A7 L(v)w) < ma(w,w).
LEMMA 5.

(14) IB(o+2) - B(v) — L)zl acr < Cllels
LEMMA 6. Let e, = u* — ug, we then have

(15) leksala < Co (leell2 + )

where 6 < pr(1 — pr) " Hlur+1 — uglla-
Based on this lemma, we prove that

THEOREM 2. There ezist constants ¢; and ca, both sufficiently small, such
that if {|u* — uglle < ¢1 and py < ¢z, for all k, then

llw” = uklla < PFllu” — uolla-

Here 0 < p < 1 is a constant independent of the mesh parameters. In addition,

if pr — 0 in such a way that p, < {Cllexlla,1/(2Co)}, then the convergence is
guadratic, i.e.,

" — uksalla < Cllw” — ugell?,

where C is independent of the mesh parameters.
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