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A Domain Decomposition Method
for Bellman Equations

F. CAMILLI, M. FALCONE, P. LANUCARA AND A. SEGHINI

ABSTRACT. We apply a domain decomposition technique with subdomains
without overlapping to construct an approximation scheme for Bellman
equations in R™. The algorithm is presented for a 2-domain decomposition
where the original problem is split into two problems with state constraints
plus a linking condition on the interface. We establish the convergence to
the viscosity solution and show the results of a numerical experiment.

1. Introduction.

We deal with the numerical solution of the Bellman equation related to the
infinite horizon problem with state constraints in an open bounded convex subset
Q of R™, namely

(B) Au(z) + max [-b(z,a) - Vu(z) — f(z,a)) =0 , =z,

where ) is a positive real parameter and A is a compact subset of R™ representing
the set of admissible controls. It is known (see Soner [8], Capuzzo Dolcetta-Lions
[3]) that, under rather general assumptions, the value function of the problem is
the unique constrained viscosity solution of (B). We mention that the numerical
solution of (B) gives complete information about the control problem since it
provides approximate optimal controls in feedback form and the corresponding
approximate optimal trajectories. However, this solution requires to solve a
partial differential equation in 2 and this can be unaffordable when the nuraber
of state variables is large (f.e. in many economic problems 2 C R" and n >>
10). This is the main obstacle that has limited the application of the dynamic
programming approach to the solution of real problems. The application of a
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domain decomposition strategy seems to be an answer to this problem since it
permits a huge problem (in {2) to be split into a number of problems (in Q) of
managable size. This strategy can be directly implemented on parallel machines
enlarging the possibilities of the dynamic programming approach.

We refer to [6] for a first step in this direction, where we studied a splitting
algorithm for (B) based on a domain decomposition with overlapping between
the sets €, of the decomposition, Q = {J, Q,, r = 1,...,d. Here we extend our
result to the situation in which we do not have overlapping using a variable step
technique. For simplicity we present our algorithm in the case of a 2-domains
decomposition but the extension to an m-domains decomposition requires only
technical adaptations.

Our approach is based on recent results in the numerical approximation of the
infinite horizon problem with state constraints. We refer to [2] for an a priori
estimate of the fully discrete scheme with fixed time-step and to the references
therein for other numerical methods for Hamilton—Jacobi-Bellman equations.
It is important to notice that the basic ideas of the method presented here are
general enough to be applied to other first order Hamilton—Jacobi-Bellman equa-
tions. Finally, we should also mention the work [9] on the numerical solution of
the Bellman equation related to an exit time problem for diffusion processes (i.e.
for second order elliptic problems) wherein a different algorithm is considered.

2. The infinite horizon problem with state constraints

Let  be an open bounded convex subset of R™ with regular boundary (v(x)
being its outward normal at z € Q). We will make the following assumptions
onb:R"xA—-Rrand f:R"xA—-R:

(A1) b and f are continuous in  x A

(A2) lg(z1, ) — g{z2,a)| < Lg|z1 — 22| forg=>bfandac A

Soner [8] has extended the notion of “viscosity solution” in order to characterize
the value function for the constrained problem. To this end, he also proved that

the value function is continuous provided there exists a positive constant ¢ such
that

(A3) Yz € 09 Ja € A such that < b(z, a),v(z) >< —c <0,

(see also [3] for further theoretical results on constrained problems). In [5] and
[2] the following fully discrete scheme has been studied

(BF) u(z;) = aeirﬁx_){(l — Ah)u(z; + hb(z;,a)) + hf(z;:,a)}, i=1,...,N

b

where z;, is a node of a regular triangulation of €2, h is a positive parameter
to be interpreted as a (fixed) time-step and for any i € I = {1,... , N} the set
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Ap(x;) is defined as
(1) Ap(zs) ={ac A: z; 4+ hb(zi,0) €Q}, iel.
yotice that, due to (A1) anii to the boundary condition (A3), there exists a
h > 0 such that for any h < h
(2) An(z) #£0, iel

Working in the space of piecewise linear finite elements, (BF) is reduced to a
finite dimensional fixed point problem which admits a unique solution V* by the
contraction mapping theorem.

3. A convergence result for the domain decomposition method

In this section we modify the previous approach by considering a variable time
step 7 in order to deal with a decomposition without overlapping.

Let €2 be partitioned into two open subdomains ; and (2, such that @ = Q;U
€23, and let T be the inteiface, i.e. T' = 80;N0,. Given the above decomposition
and a positive parameter h, we define the variable step 7 : 2x A — R, as follows

_ "(z,a) (z,0) € Q. \T x Ap(z),
n(z,a) = { Z (z,0) € T x Ap(z)

where
n"(z,a) = min{inf[t € R, : z +th(z,a) e R*\ Q,],h}, 7=1,2

We define the following operator Dj, : L®(2) — L*(9),

eglf( ) {B(z, a)u(z +1(z,a)b(z, @) + 7(z,a)f (z,0)} = EQ\T,
[Drul(z) = { Lr:f( ) {(1 = AR)u(z + hb(z,a)) + hf(z,a)} z€Tl

where 3(x,a) = (1 — An(z,a)). In order to establish the convergence of the
domain decomposition algorithm, we study the properties of Dp.

THEOREM 3.1. If (A1), (A3) are verified and h € (0,3], then there exists a
unique solution up € L°(Q) of

() u(z) = Dpu(z) z€Q

PROOF. Unigueness. Let us suppose that there exist two solutions u,v €
L>(Q) of (3). Let z € I, then there exists a € Ap(z) such that

u(z) — v(z) < (1 — Ah)[u(z + hb(z, a)) — v(z + hb(z, a))]
and, by symmetry, we get

(4) u(z) — v(@)] < (1 - M)[u —vllz=(@)
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For z € 0\ T we have

u(@) — v(e) < Bz, a)lu(z +n(z, a)b(z, a)) — v(z + (=, a)b(z, a))]-

If 7(x, a) = h we conclude as in (4). When n(z,a) < h we have z+n(z, a)b(z,a) €
T so that by (4), we obtain

u(@) - v(@) < Bz, a)(1 ~ M)l — vl

In conclusion, (4) is verified for any z € Q0.

Ezistence. Let ||flloo < My, up = —My/X and u® = My/A. It is simple to
check that ug and u® are respectively a sub-solution and a super-solution of (3).
Let K be the convex, closed subset of L>(2) defined by K = {u € L®(Q) : ug <
u < u%}. The operator Dy, is compact and Dy, (K) C K, so Schauder’s fixed point

theorem (see e.g. [7]) implies that there exists a solution of (3). O

Remark. In order to give a constructive method to compute the fixed point us,
we use the following strategy. We define 1.(z,a) = n(z,a) V¢, for ¢ > 0 and
introduce a new operator Dy, which is obtained replacing 7(z, a) with n.(z,a)
in the definition of Dj. Dy, is a contraction map in L>°(Q2) and we will denote
by un. the corresponding fixed point. Then we can prove that

flun — uhellee < MeVn —e)llunlze + (1 — Me V n)llun — urellze
which implies
llun — unellze < (1— g%h‘)nuh“mm
Therefore the sequence of fixed points uy. converges to up, as € —> 0F.

THEOREM 3.2. Let (A1) and (A3) be verified. Then {upn} converges uniformly
in ) to the unique constrained viscosity solution u of (B).

PROOF. Let us define

7 = limsup up(y), u = liminf up(y)
R0t h—ot

gz y—a

Then u < . If we prove that u is a viscosity sub-solution in Q of (B) and Tis a
viscosity super-solution in €0, by the comparison theorem in [1] we can conclude
that 4 = % = u in © and u; — u uniformly . The proof in Q \ T can be
obtained by a straightforward modification of Theorem 2.7 in [2]. Therefore we
limit ourselves to the case z € T".

Given ¢ € C®(RQ), let zp € T NN be a maximum point for @ — ¢. Then, by
definition of %, there exist two sequences {h,} and {y,} such that A, — 07,

Yo — &

Ulzo) = Hm up, (yn)
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and y, is a maximum point for up, — ¢. Since zy € (, Ap, (yn) = A, for h
sufficiently small. Since y,, is a maximum point for Up,, — ¢, for any fixed a € A,
we have

M (Yn, @), (Yn) — B(Un, @) [un, Un + 1(Yn, @)b(Yn, @) — up, (yn)] +
= 1Yn, @) f (Yn, @) < M)(Yny &)un, (Un) — BWn @) [6(Yn + 1(Yn, @)b(n, a))+
=)l + 1(Yn, @) f (Yn, @)

By definition, 7(yn,a) — 0% for n — 4oo and 7(z,a) > 0 for any (x,a) €
Q x Ap(z), so dividing the above inequality by 71(Yn, a) and passing to the limit
for n tending to oo we obtain

Atu(zo) — bz, a) - Vé(zo) — f(z0,0) < 0.

Since a is arbitrary, this implies that @ is a subsolution of (B) at zq.
Let 2o € I' N} be a minimum point for » — ¢. Then we can define a sequence
{n} of minimum points for us, — ¢ such that

u(wo) = lim up, (yn)-

Let @, be a control such that the infimum in (Dp,) is obtained. Since {@,} is
contained in the compact set A, there exists a subsequence, still denoted by @,

and @ € A such that lim @, = @. Then a straightforward computation gives
n~—+co

0 < A9(Yn, @n )i, (Yn) = B(Yn, 8n) [P(yn + M(Yns n )b(Yn, Tn)) — S(yn)] +
~ 1(Yn, @) f (Y, Tn)
Now, dividing the above inequality by 7(¥n,8x), we get for n — +o0

0 < Au(zo) — bz, @) - Vé(zo) — f(zo, @)
which implies that v is a supersolution of (B) at z5. [
In order to define the numerical algorithm we introduce the following notations,
(5) Ai(z)={ac A:z+n(z,a)b(z,a) €O}, z€Q, r=12
The definition of 5z, a) implies that
(6) Ap(z) = Al () vzeQ\T r=1,2

(7) Ap(z) = AL(z) U Al(z) vzel
We shall always assume that the triangulation of {2 is such that
(A4) no simplex crosses I'.

We will divide the nodes z;, i € I = {1,... , N}, into three classes depending on
the region to which they belong, defining

Iu={z':a:iGI‘}andlrz{z':zieﬁ,.\F}, r=1,2
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Let N,, r = 1,2, be the number of nodes in Q,. We define the “discrete”
restriction operator

(8) R, :RY >R, R.(U) ={Uilicr,ur,» =12

Since the numerical solution of (3) on the triangulation requires to compute the
value of u in points which are not nodes, we use a linear interpolation defining

N
u(@; + (i, a)b(zi, a)) = 3 Ay (@)ulz;),

i=1

where \;;(a) are the baricentric coordinates of the point z; 4n(x;, a)b(x;, a) with
respect to the vertices of the simplex which contains it. The decomposition of
Q corresponds to split the (V x N)-matrix A(a) into two submatrices AV (a) =
NP (@)}igenun, and A® (@) = AP (@)} jenut,-

We introduce the two discrete operators D; and Dy, D, : RN — RN- p =
1,2, related to the subdomains 23 and Qy

[DT(U)],L = aegl’gr(lzi) {ﬂ,(a) ‘ Z /\5_;‘) (a)Uj -+ m(a)Fl(a)} 5 1€ IT U I(),
Jj€lUlo
where 1;(a) = 7(z;,a) , Bi(a) = B(z:,a) and F;(a) = f(z;,a).
Finally, by D; and D, we define the operator D : RY — RV related to the
domain  as follows:

_f DU iel,r=12,
Dk ”{ min{(Dy (U], [Da(UD)]:} i€ Io

where U™ = R,.(U),r = 1,2.

Remark. The discrete map D corresponding to the operator Dy, and the discrete
map corresponding {o the operator Dy, coincide for € = min{n(z;,a),% € I,a €
Ap(z;)}. Therefore the convergence of the fully discrete operator is guaranteed
by the contraction mapping theorem.

Numerical experiment.
Let us set 2 = (—2,2)2, Q; = (-2,0) x (=2,2), 2 =(0,2) x (-2,2)

A=10,1], X=1, b{z,y,a)=(ay,0)and f(z,y,a) = (Jz| — 1)°.

The exact solution is known. Numerical results in double precision FORTRAN
where obtained on an IBM 3090 using only 1 CPU. The computation of the
solution in Figure 1 required 136 iterations for a total of 85 seconds of CPU time
giving an L>° error of 0.025.
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FIGURE 1. The approximate solution and its level curves (h=
0.05, k = 0.025).
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