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DOMAIN DECOMPOSITION FOR THE SHALLOW WATER
EQUATIONS

J. G. CHEFTER, C. K. CHU, AND D. E. KEYES

ABSTRACT. Domain decomposition (Krylov-Schwarz) iterative methods are
proposed for the parallel implicit solution of the unsteady geopotential equa-
tion that arises when semi-implicit, semi-Lagrangian (SISL) methods are em-
ployed in the long-time integration of the shallow water equations. SISL meth-
ods permit timesteps on the scale of Rossby wave dynamics, in contrast to the
small timesteps required to resolve gravity waves, and thus satisfy the stability
bound of an explicit method. The price of the semi-implicitness is a global
elliptic problem on a multiply-connected semi-periodic domain with variable
coefficients that become singular at the poles of latitude-longitude coordinate
systems. Elliptic solvers based on domain decomposition offer flexibility in
discretization and good algebraic convergence properties. They also provide
good data locality with a view towards high-latency coarse- to medium-grained
parallelism.

1. THE SHALLOW WATER EQUATIONS

The system of shallow water equations (SWEs) is a hyperbolic problem at the
core of many models for the dynamics of the oceans or the atmosphere. In this
paper, the SWEs are reformulated for large timestep by putting the computational
burden on a scalar elliptic equation addressable through Schwarz-type domain de-
composition methods. The three-dimensional Euler equations for a shallow layer of
Inviscid fluid on a sphere of radius a rotating with angular velocity Q reduce under
the assumptions of constant density, hydrostatic balance in the radial direction,
and the Taylor-Proudman hypothesis to:
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FIGURE 1. (a) Regular staggered grid employed for (u,v, @) (b)
Computational domain.

The unknown fields are u and v, the vertically averaged velocities in the longitudinal
(¢) and latitudinal () directions, and the free-surface geopotential, . Potentials
® = gh(p, A\, t) and &, = ghyp(p, A), are deﬁned in terms of the height of the top and
bottom surfaces, and % = gt +2 Bw + 2 5y is the horizontal material derivative.

To integrate these equations, we use the senn—Langranglan scheme first proposed
in [7, 8]. The integral of either of the momentum equations (1,2) over one timestep
can be approximated to first-order accuracy in time as E¥*1 — Bk = ¢k+1r where
EF+1 is the value of Z at the arrival point (g, A) of some streamline at time (k+ 1),
=k is the value of Z at the departure point (., \) of the same streamline at time
k7, and £517 is the implicit approximation of the RHS. To find the departure
point (px, A«), one needs to integrate backwards along the characteristics, which
can be approximated [4] by a sum over N equal intervals 71 = X

Implicit approximation of the integrals leads to better stability properties of the
scheme in comparison with explicit time integration. In fact, explicit schemes for
shallow water equations must respect the CFL condition {10]: T < &/(Ju| + |v| +
v/gh), where § is a cell diameter. The speed of the gravity wave v/gh usually poses
the most restrictive condition on allowed timestep. For high latitudes this may
lead to timesteps of the order of minutes, which are unreasonably small for desired
simulation periods. Semi-implicit schemes remove the gravity wave speed from the
CFL condition. Used with semi-Lagrangian integration of the material derivative,
they often result in unconditionally stable schemes.

Applying semi-Lagrangian integration for momentum equations (1,2) we get a
system of two linear equations. Solving it for w**! and v**!, substituting them
into the implicitly integrated continuity equation (3), and cancelling cross-derivative
terms, a self-adjoint elliptic equation for ®*+1 results:

6@k+ 1
oA )

d o=+t '#)
‘ k+1 2 k _ 2 k
(4) d*tleos A —n cos}\a(p(W 5 )—¢ ESA(W cos A

= ®* cos A — 5jcos A%(W’“(u’: + Fruky) — C%(W"’ cos M(vE — FruF)),



DOMAIN DECOMPOSITION FOR THE SHALLOW WATER EQUATIONS 487

L6 | | A R l

1.4

1.2 -

1 -

x107 0.8 -
0.6 -

0.4 ~

0.2 -

4]

0 02 04 06 08 1 1.2 14 16 18
x10%

FIGURE 2. FLOPs versus number of unknowns for ||r||/|iro|| <
1078, 1-ILU(4), 2-ASM, 3-MSM. Both Schwarz methods are
based on four longitudinal strips.

and simple formulae for u**+! and v*+! in terms of ®*+1:
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where F* = (20 sin A + “Tktan/\)T, n=-—2x,{(=Z%and W¥= ——WFTI’Z . .
Our staggered mesh is shown in Fig. 1(a). Using centered five-point space dif-
ferencing, we get a first-order in time, second-order in space numerical scheme. In
k+1

matrix form, for naturally ordered ;0

where A4 is symmetric positive definite block-tridiagonal matrix. Linear stability
analysis shows that the numerical scheme is unconditionably stable.

The computational domain with one island is shown in Fig. 1(b). For the simplest
case of boundaries parallel to coordinate lines, the momentum equations at the
boundaries are reduced to the following mixed-derivative implicit conditions for
(4), for boundaries of constant ) and constant , respectively:

opH+1 PR, BRM L 0P

By treating the surface height gradients in the momentum equations exp%i(_ntly
We could get simple Neumann boundary conditions, but in our tests these conditions
led to instabilities on the boundaries. Boundary conditions (8) are stable, but they
make the system (7) slightly nonsymmetric. o

Equation (4) with Dirichlet or Neumann boundary conditions is of a form for
which overlapping domain decomposed preconditioners exist such that t.he Scém'er-
gence rate is independent of the resolution and the number of subdomains (3].
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2. KRYLOV-SCHWARZ ALGORITHMS

Schwarz-preconditioned Krylov solvers for linear systems, A® = g, find the best
approximation of the solution ® in a small-dimensional subspace that is built up
from successive powers of the preconditioned matrix on the initial residual. A
variety of parallel preconditioners, whose inverse action we denote by B~1, can be
induced by decomposing the domain of the underlying PDE, finding an approximate
representation of A on each subdomain, inverting locally, and combining the results.
Generically, we seek to approximate the inverse of A by a sum of local inverses:

9) B™' =" R{A;'Ry,

k B
where Ry is a restriction operator that takes vectors spanning the entire space into
the smaller dimensional subspace in which A is defined.

The simplest domain decomposition preconditioner is block Jacobi, which can
be regarded as a zero-overlap form of additive Schwarz [5]. The convergence rate
of block Jacobi can be improved, at the price of a higher cost per iteration, with
subdomain overlap and (for many problems) by solving an additional judiciously
chosen coarse grid system. Our tests show that even a relatively small overlap of
two mesh widths make preconditioner (9) comparable to the popular incomplete
LU on a serial computer. In serial, the most natural form of Schwarz iteration is
multiplicative, which improves the convergence rate of the algorithm, at the price
of coarser parallel granularity, by enforcing sequentiality between the subdomain
solves, just as Gauss-Seidel improves on Jacobi. Results are given for both additive
(ASM) and multiplicative (MSM) versions of the preconditioner.

3. NUMERICAL RESULTS

The SISL code is built on top of the Argonne PETSc library [6]. Results be-
low are from Sparcl0 and Intel Paragon implementations. Figure 2 compares the
performance of ILU, ASM, and MSM as left-preconditioners for GMRES. ILU(4)
is used in the comparison, since four levels of fill led to the best ILU results. Strip
subdomain problems (with overlap of 2h) are solved exactly with a nested dissec-
tion ordering within each subdomain for the Schwarz methods. Even without a
coarse grid, exact subdomain Schwarz methods performed better than ILU for this
modest granularity, and improve upon ILU not only in the number of FLOPs, but
also in the rate of growth with problem dimension.

P || Pois.-Dirichlet | Pois.-Neumann | SISL-with c.g. | SISL-w/o c.g.
add. ] mult. | add. l mult. add.L mult. | add. ] mult.

4 13 6 51 16 16 7 13 7
16 11 5 30 12 17 8 15 8
64 9 4 18 9 16 8 17 8
256 8 3 15 7 15 8 18 10

TABLE 1. Number of iterations with number of subdomains P, for
four problems, additive or multiplicative preconditioning.

We experimented with a two-level Schwarz preconditioner by adding a coarse
grid with one degree of freedom per subdomain, with standard bilinear grid transfer
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FIGURE 3. Wall-clock time (sec) vs. number of unknowns for
lIrl|/llrell < 1078 on the Paragon, for different numbers of sub-
domains (processors), n.

operators. To verify its correct operation (convergence rate bounded independent
of mesh resolution and subdomain diameter, asymptotically), the Poisson Dirichlet
problem in a unit square was solved as in [2] for a range of coarse grid granularities,
and the results appear in Table 1, together with convergence results for a Poisson
operator with periodic BCs in z and Neumann BCs in y and potential equation (4)
with explicitly integrated boundaries, with and without a coarse grid. (The Poisson
Neumann problem has a null space of the constant vector, which was eliminated by
employing a Dirichlet condition at one point common to both fine and coarse grids.)
A box decomposition is used, for a 128 x 128 grid, iterated until ||r||/||ro|l < 1075.

The effectiveness of the coarse grid for the constant-coefficient operator in the
first two pairs of columns can be seen in the decrease in the number of iterations as
the granularity of the decomposition increases for both boundary types and both
additive and multiplicative preconditioning. Comparison of the last two pairs of
columns (for the same SISL problem) shows that the coarse grid does not make a
large difference, though the difference widens for large problems. A time step of
one hour is used in (4), which makes matrix A only slightly diagonally dominant,
so the effect of the coarse grid is not buried in any parabolicity of the problem {1].
The ratio of the diagonal term to the biggest off-diagonal term is about 3 or 4 near
equator and goes down to unity near the poles. This aspect of the problem remains
under investigation.

4. PARALLEL RESULTS

Parallel implementation of the one-level Schwarz-based preconditioners was car-
ried out on the Paragon. Vectors and matrices are distributed row-wise across
processors and all subdomain solves are processed concurrently up to the number
of available processors. Unfortunately, Semi-Lagrangian integration turns out to be
poorly parallelizable, because the relative location of (¢,, A.) in the processor array
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is solution-dependent and generally irregular. At present, it is done sequentially,
which limits the scalability of the computation.

Figure 3 shows the dependence of elapsed time on the number of the unknowns
N for various numbers of subdomains (processors). For zonally dominant (i.e.,
longitudinally oriented) flows, zonal strip decomposition gave better performance
than box decomposition for the problem sizes considered. Sequential multiplicative
OSM, which in our experiments has proved to be the most efficient algorithm of all
tested, is used for comparison. Its high rate of growth with IV for large N reflects
thrashing of the memory hierarchy.

5. CONCLUSIONS

By concentrating data dependencies locally, domain decomposition precondition-
ers exploit the two-level memory hierarchy of high-latency distributed memory ar-
chitectures. Low-communication zero or small overlaps between the preconditioner
blocks are feasible with small convergence rate penalty, at least for intermediate
granularities. Demonstrating the applicability of elliptic-based domain decomposi-
tion preconditioners to the shallow water equations opens the door to a variety of
parallel implicit models in long-time integration geophysics applications.
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