Contemporary Mathematics
Volume 180, 1994

A comparison of three iterative algdrithms
based on domain decomposition methods

PATRICK CIARLET JR

ABSTRACT. In this paper we compare three domain decomposition precon-
ditioners for the capacitance matrix and the conjugate gradient methods
to solve linear systems arising from the discretization of elliptic partial dif-
ferential equations. The methods have been implemented on parallel and
superscalar architectures. Numerical experiments show that using these
preconditioners leads to competitive algorithms, both in terms of number
of iterations and parallelization rates.

1. Introduction

In this work, we corapare the parallel and superscalar implementations of three
different iterative methods designed to solve the finite element discretization of
elliptic problems such as

—div(AVu) = a in Q, with A(z,y) = (a(:f)’ Y 5(330’ y))

u = 0 on 0.

Here =]0,1[x]0,1] and a, b and « are given functions, ¢ and b being non-
negative over the domain. We approximate these problems by using a P finite
element method with right triangles, leading to a five-point centered scheme.
Note that by doing this, we are able to handle problems with discontinuous co-
efficients without any difficulty, as long as the jumps occur on the sides of the
triangles. This gives us a linear system Az = f, with a n by n symmetric positive
definite matrix A.

‘We propose to solve this linear system by using either the Capacitance Ma-
trix and Conjugate Gradient methods or the Preconditioned Conjugate Gradient
(PCG) method. Our goal is to obtain a good trade-off between the convergence

1991 Mathematics Subject Classification. 65F10, 65F50, 65N55.
This paper is in final form and no version of it will be submitted for publication elsewhere.

1994 American Mathematical Society
0271-4132/94 $1.00 + $.25 per page

387

388 PATRICK CIARLET, JR.

rate for the iterative methods and the Mflops rate on the computers. In order
to define the preconditioners, we use domain decomposition methods based on a
partition of the domain into boxes or strips. Moreover, to be able to use the itera-
tive methods for solving large problems, we focus our interest on preconditioners
requiring reasonable storage, i.e. “sparse” preconditioners.

In the next section, we briefly recall the definition of the Capacitance Matrix
method. In section 3, we define the preconditioners. Finally, we compare our
iterative methods in the last section.

2.The Capacitance Matrix Method

This method was first investigated by Buzbee and al in [1]. Let B be a
nonsingular n by n matrix and S an extension matrix such that, using block
notation, we have

An A12) (Au A12) (0)
A = ’ B = d S = .
<A21 Ay By B an I,
Here only the last g rows of A and B differ. The g by ¢ matrix C = STAB~18

is called the capacitance matrix. One can easily prove that the capacitance
matrix is nonsingular. Then the original problem Az = f can be replaced by

By = h, with hl = fl, h2 = 0,
Cw =g, with g = ST(f — Av),
Bz =h+ Sw.

If C is small enough, then a direct solver can be used. Otherwise the linear
system with C can be solved iteratively. In the following, we use either the
Diagonally Preconditioned Conjugate Gradient (DPCG) method or a Conjugate
Gradient-like method with matrix B as a “preconditioner”, see [11] and [2].
Particularly, this means that one linear system in B is solved at each iteration
for the second method.

3.The DD preconditioners

The construction of the preconditioners is based on partitioning the domain
as indicated on Fig. 1, that is either into strips or boxes. We propose three
preconditioners in the following. The first one is based on the partition into
strips and the other two on the partition into boxes. Note that here we consider
only nonoverlapping subdomains (strips or boxes).

The stripwise partition was introduced by Dryja and Proskurowski in [6].
Briefly, they defined a preconditioner of the original problem by keeping the
same operator inside the strips and adding boundary conditions on the interfaces:
Dirichlet boundary conditions for the white strips and Neumann boundary con-
ditions for the black strips. Here, we replace the Neumann boundary conditions

COMPARISON OF DD-BASED ITERATIVE ALGORITHMS 389

V7772277720700 20000602 er ot vre o OIS 77077 F777%
AR AR AR AR AT Yy 25050 ko200
g il bl B
o ey 27727 Poyre b7 277

22PE 2247 22227

iy 26552 vrer

b7 22202 (2727

boor7d i 72 s

Y vy 22222,
P PP P I TR I NI PO II PP PP PP EPPET IV 72227 s Y
V200070000100 T P02 T C 00T 2200902207 Yo 92702 s
iy iy 2272 27272 k22723
LRy, 25555 5555 2550

b777, Ff 77777

b 72571 970 2220,

k72724 77207 s

vy sy e

e | 22
LELLPLELELILEPEPOLPIEEIDES PP IF PP P 227 2] 7272 s p 7272
A A A AT AR % 55577 22002 vy
i i B B
Z. 227 X ”'l""’l’flll”/’, 2 YL X L4 2220 LIXLY

prrrrd iy 20722

22N

3
k57721 e 22007

FiGURE 1 DECOMPOSITIONS OF THE DOMAIN

by mixed Neumann-Dirichlet boundary conditions for the black strips, i.e.

pu A+ @ =0, pu>0
on
Indeed, taking a prescribed nonnegative value for y improves greatly the con-
vergence rate of the method!. See [3] for numerical examples and details of
implementation. Let B; be the discretized preconditioner. We have three types
of unknowns: the nodes in the white strips (W), the nodes in the black strips
(B) and the nodes on the interfaces called separators (S).

If we rewrite A and B; by block, it can easily be seen that A and B; differ
only by their SS diagonal block. We therefore use the Capacitance Matrix and
Conjugate Gradient methods to solve the problem in this case. Also, solving one
linear problem with B; can be done in two steps:

(1) one parallel solve on the extended black strips,
(2) one parallel solve on the white strips.

Extended black strips include their surrounding separators. The resulting
method is called Capl.)

The boxwise partitioning was introduced by Proskurowski and al in [7], [8]
and [10]. The second preconditioner B, is similar to Bj, except that purely
Neumann boundary conditions are considered for the black boxes. Indeed, for a
variety of numerical examples (]3] or [4]), one can see that when the domain is
divided into boxes, then the purely Neumann boundary condition is “optimal”.
Adding a fourth type of unknowns: the crosspoints (C), we use the same strategy
as before to derive an iterative method also based on the Capacitance Matrix
and Conjugate Gradient methods. Now, solving a linear problem with Bs is
done in two steps:

(1) one solve on the extended black boxes and the crosspoints,

(2) one parallel solve on the white boxes.

YThis is also true for overlapping strips, as proved by Tang [12].

390 PATRICK CIARLET, JR.

In short, to uncouple the extended black boxes (which include their surround-
ing separators), we introduce a problem defined only on the crosspoints. The
corresponding matrix is sparse with at most seven nonzero entries per row (see
[2]). The problem (1) which was originally defined on the extended black boxes
and the crosspoints is replaced by two problems on the extended black boxes
and one problem on the crosspoints:

(1.1) two parallel solves on the extended black boxes,
(1.2) one (parallel) solve on the crosspoints.

The problem defined on the crosspoints is solved by the DPCG method to get
a parallel solver. The resulting method is called Cap2.

The third preconditioner, called M, is equal to one of the preconditioners
studied by Ciarlet and Meurant. M corresponds to the second preconditioner in
their terminology; see [5] for details. Solving a linear problem with M requires:

(1) two parallel solves on the (black and white) boxes,
(2) two parallel solves on the separators,
(3) one (parallel) solve on the crosspoints.

Step (2) is parallel because it can be shown that Mgg is block diagonal, each
block corresponding to the nodes around a black box. For step (3), the DPCG
method is used. As a matter of fact, the problem defined on the crosspoints for
B; and M are identical. This last method, based on the PCG method, is called
MPCG.

4. A few numerical examples

We solve the linear system Az = f on two computers. The first one is a
Sequent Symmetry S81 with 20 Intel 80386 processors: a shared memory parallel
architecture. The second computer is an IBM RS6000/560 with a RisC6000
processor: a superscalar architecture. The programming language is Fortran 77.
We run the same code on both machines, with a preprocessing step using KAP
[9], an automatic parallelizer, on the Sequent.

We will study the iterative methods in terms of

(1) the number of floating operations to solve the linear problem,

(2) the number of floating operations per second,

(3) the speed-up on the parallel architecture, from 1 to 16 processors,
(4) the CPU times.

Moreover, we will compare these results with those obtained for a well known
iterative parallel method, the DPCG method.

The set of problems to be solved is

Problem #1 Problem #2) Problerr; #3 . .
10 fo<y<s 102 if3<z<2

a=1in az{ tUsY=<3 a-——{ Ha=%>1
1 elslewhere 1 elsewhere
10 fs<e<1

b=1in0Q b:{ B b=1inQ
1 elsewhere

COMPARISON OF DD-BASED ITERATIVE ALGORITHMS 391

We set the number of unknowns, n, to 65025 (= 2552). As we iteratively solve
the problems, a stopping criterion is prescribed: it is reached when the norm of
the residual has been reduced by a factor of 1076,

Then, we have to choose the number of strips (called ng) and the number
of boxes (called n2). The bigger this number is, the greater the parallelism
of the method, as %no (vesp., %n%, nZ) subproblems are solved in parallel for
Capl (resp., Cap2, MPCG). However, note that by the way the domain is
partitioned (Fig. 1), ng can, at most, be as large as %\/ﬁ Finally, recall that
we want “sparse” preconditioners: here, this means that the number of nonzero
entries of the preconditioners is proportional to n, as the storage of the original
matrix and the vectors for the DPCG method is approximately 11n. In [3],
it is shown that this also leads to a value of ng proportional to v/n. Therefore,
potentially parallel preconditioners are “sparse” and vice versa. In the following,
we choose ng = 64 for the strips and nZ = 322 for the boxes, leading to the
following storage for the original matrix, the preconditioner and the vectors for
each iterative method: 20n for Capl, 37n for Cap2 and 43n for MPCG.

The parameter u, arising in the mixed Neumann-Dirichlet boundary condition
for Capl, is set to ng.

Table 1 compares the number of floating operations for Problem #1.

Table 1
Number of floating operations

Method |DPCG| Capl| Cap2 MPCG
FLOP | 928.10° | 343.10° | 244.10% | 312.108

The results are quite similar across all methods. The reference method gives
by far the worst results. The numbers of iterations required to solve Problem #1
are the following: 645 for DPCGQ, 87 for Capl, 12 for Cap2 and 17 for MPCG.
Unfortunately for the box-based methods, the average number of subiterations
to solve the problem defined on the crosspoints is equal to 61 for the first method
and 63 for the other.

Tables 2 and 3 give the average number (over the three problems) of float-
ing point operations per second for each method. The results are in MFLOPs
(millions of FLOPs). Table 2 gathers the results obtained on the RS6000. In
Table 3, results are given for one and sixteen processors of the Sequent, and the
corresponding speed-up is derived.

Table 2
Number of floating operations per second on the RS6000

Method |DPCG |Capl|Cap2|MPCG
MFLOPs | 25 24 | 20 16

392 PATRICK CIARLET, JR.

Table 3
Number of floating operations per second and speed-up [bracketed] on the Sequent

Method DPCG | Capl Cap2 | MPCG
MFLOPsg1y 0.31 0.41 0.32 0.38
MFLOPs6; |4.8 [15.7]|5.5 [13.6]|3.6 [11.3]|3.9 [10.5]

Surprisingly, the reference method is not the fastest one on the parallel ar-
chitecture, though it is for this method that the highest speed-up is reached.
In terms of parallel versus sequential parts of the execution of the code, using
Amdahl’s law, one finds that well over 99% of the reference method is executed
in parallel, in comparison to a little less than 99% for the strip-based method
and around 97% for the box-based methods. Note that these box-based imple-
mentations are actually less parallelized than the strip-based one, although they
are potentially more parallelizable.

Finally, we show the CPU times needed to solve Problem #2 on the RS6000
in Table 4 and the CPU times on the 16-processor Sequent to solve Problem #3
in Table 5. :

Table 4
CPU times on the RS60600

Method | DPCG |Capl|Cap2 MPCG
time (s) 87 17 16 27

Table 5
CPU times on the 16-processor Sequent

Method |DPCG | Capl | Cap2 | MPCG
time (s) 990 47 161 177

The best methods are Capl and Cap2, though both box-based methods are
competitive versus the strip-based method. Moreover, a closer look at the CPU
time shows that one third of the time is spent in the subroutines computing
the matrix defined on the crosspoints for the box-based methods. Therefore,
one way to reduce the CPU time for these methods is to find a better way to
compute this matrix. Note that the strip-based method is particularly efficient
for Problem #3, although the first coefficient of the operator) is only piecewise
constant inside each strip.

4. Conclusion

In this paper, we have presented three preconditioners for CG-like methods
that seem well suited for parallel architectures. We have shown that the three
of them compare very favorably to a fully parallel method. Nevertheless, the
box-based methods have to be implemented on a massively parallel architecture

to

COMPARISON OF DD-BASED ITERATIVE ALGORITHMS 393

further enhance their merit, as they are potentially more parallelizable than

a strip-based method. For the box-based methods, a solution has to be found to
the very costly computation of the matrix defined on the crosspoints. Also, an
efficient solver has to be derived for this matrix.

11.

12,

REFERENCES

. B. Bugbee, F. Dorr, A. George and G. Golub, The direct solution of the discrete Poisson
equation in irregular regions, SITAM J. Numer. Anal, 8 (1971), 722-736.

. P. Ciarlet, Jr, Méthodes itératives de résolution de problémes elliptiques en 2D adaptées
& des architectures (massivement) paralléles, Technical Report, Note CEA 2688 (1992).

. P. Ciarlet, Jr, Etude de préconditionnements paralléles pour la résolution d’équations aux
dérivées partielles elliptiques. Une décomposition de l’espace L? (Q)3, Ph.D. thesis, Univ.
Paris VI, France, 1992.

. P. Ciarlet, Jr, Implementation of a domain decomposition method well-suited for parallel
architectures, Int. J. of High Speed Computing (to appear).

. P. Ciarlet, Jr and G. A. Meurant, A class of domain decomposition preconditioners for
massively parallel computers, Domain Decomposition Methods in Science and Engineer-
ing (A. Quarteroni, J. Périaux, Y. A. Kuznetzov and O. B. Widlund, eds.), AMS, 1994,
PP 353-359. .

. M. Dryja and W. Proskurowski, Capacitance matriz method using strips with alternating
Neumann and Dirichlet boundary conditions, Applied Numer. Math. 1 (1985), 285-298.

. M. Dryja, W. Proskurowski and O. Widlund, Numerical experimenis and implementation
of a domain decomposition method with cross points for the model problem, Advances
in Computer Methods for Partial Differential Equations VI (R. Vichnevetsky and R.S.
Stepleman, eds.), IMACS, 1987, pp. 23-27.

. M. Haghoo and W. Proskurowski, Parallel implementation of a domain decomposition
method, Technical Report, CRI 88-06 (1988).

. Kuck and Associates, Inc., KAP/Segquent user’s guide version 6, 1988.

. W. Proskurowski and S. Sha, Performance of the Neumann-Dirichlet preconditioner for

substructures with intersecting interfaces, Domain Decomposition Methods for Partial Dif-

ferential Equations (T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, eds.), SIAM,

1990, pp. 322-337.

W. Proskurowski and O. Widlund, A finite element-capacitance matriz method for the

Neumann problem for Laplace’s equation, SIAM J. Sci. Stat. Comput. 1 (1980), 410-425.

W. P. Tang, Generalized Schwarz splittings, SIAM J. Sci. Stat. Comput. 13 (1992), 573-

595.

CEA, CEL-V/ D.MA, 94195 VILLENEUVE ST GEORGES CEDEX, FRANGCE

E-mail address: ciarlet@limeil.cea.fr

