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Domain Decoinposition Methods
for Device Modelling

R.K. COOMER AND I.G. GRAHAM

ABSTRACT. We give an overview of some recent work [3] on the parallel
solution of the drift diffusion equations for semiconductor device modelling.
Discretization is by a variant of the finite element method. The resulting
nonlinear equations are solved by Gummel’s iteration, with the associated
linear systems resolved by an additive Schwarz method. The algorithm has
been implemented on a MasPar MP-1.

1. Drift-diffusion equations: discretization, outer iteration

In this paper we are concerned with the iterative solution of the (scaled)
steady-state drift-diffusion equations for device modelling [8]:

(1.1) —X2A9 + 6{exp(v — v) — exp(w — )} —d =0,
(1.2) —V.(exp(¢p — v)Vv) — op,r(¢,v,w) =0,
(1.3) —V.(exp(w — ¥)Vw) + p,7 (¥, v, w) = 0.

Here 1 is the electrostatic potential and v and w are the electron and hole
quasi-Fermi potentials respectively. The parameters A, 6, o, p, and p, are
determined by the physics of the device, d is the (scaled) doping profile and r
is the recombination/generation rate. We consider this system on a polygonal
domain @ C R? with boundary 8. At the contacts 8Qp := U;0Qp, (with
the 8Qp, closed and non-empty subsets of 0f2), we have Dirichlet conditions:
vlonp: = Wlaap; = qu, for each 1, with the constants a; corresponding to (scaled)
applied voltages. Then v is specified at the contacts by requiring that the space
charge (i.e. the zero-order term in (1.1)) should vanish there. Homogeneous
Neumann conditions are imposed on Q\9€p. The function d typically has sign
changes across thin transition regions or interfaces (between “p” and “n” regions
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of the device), and as a consequence 1, v, w have interior layers at or near these
interfaces, with width determined by the small parameter A ([8]).

To solve this system we first subdivide ) into open convex pairwise disjoint
quadrilateral substructures Q) such that 0 = U;Q®). Subdividing each sub-
structure into two triangles yields a “coarse grid” with diameter H which is
further subdivided to give a fine triangular grid with diameter h. We assume for
theoretical purposes that the refinement is quasi-uniform with respect to both
H and h and that the fine grid is of weakly acute type. We also assume that the
collision points 8Qp NOSy are vertices of substructures and hence are nodes of
both the coarse and fine grids.

We discretize (1.1)-(1.3) in Sy, the space of piecewise linear finite elements
with respect to the fine grid. We denote by ¢, the usual nodal basis functions in
Si, where p ranges over all nodes of the fine grid. Let (-, -) denote the usual L; in-
ner product, and define the corresponding discrete inner product (f, g) to be the
integral of the piecewise linear interpolant of fg over Q). These inner products can
be extended to vector-valued functions f, g in the obvious way. Also, if X € S},
we define the piecewise constant function X so that exp(X) is the harmonic av-
erage of exp(X), i.e. for each triangle T, exp(X|r) = (A(T)™" Jrexp(—X))1,
where A(T) is the area of T

We now define an iterative method for finding discrete solutions of (1.1)-
(1.3). This version of the so-called Gummel’s method consists of iterating the
map G : (V, W) — (V, W) on (S3)?, defined as follows.

Step 1. (Fractional Step) Find ¥ € S}, such that for all p & 8Qp,

(14)  X(VE,Vey) + (6{exp(¥ — V) — exp(W — )} — d, ¢,) = 0.
Step 2. Find V € Sy, such that for all p & dp,

(1.5) (exp(¥ = V)VV, V) = (opur(E,V, W), ¢p) = 0.

Step 3. Find W € S}, such that for all p & 8Qp,

(1.6) (exp(W — D)W, V) + (cpur(T, 7, W), é,) = 0.

All iterates are assumed to satisfy the essential boundary conditions on 8Qp.
If the iterates converge then the limit (¥,V, W) € (S,)%, satisfies a finite el-
ement discretization of (1.1)-(1.3) with two modifications. Firstly the zeroth
order terms have been “mass lumped” using the discrete inner product. As well
as providing a simple pointwise evaluation for complicated nonlinear terms, this
mass-lumping facilitates the formulation of globally convergent monotone iter-
ative schemes for calculating the fractional step (1.4) (see §2). Secondly the
exponential coefficients in the continuity equations (1.2), (1.3) are replaced by
their harmonic averages. This can be interpreted as a certain generalisation to
2D of the classical Scharfetter-Gummel discretization for these equations. It can
also be interpreted in terms of a “hybrid’ mixed finite element method and, as
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such, ensures that the resulting (piecewise constant) approximations to the elec-
tron and hole currents (exp(y—v)Vv and exp(w—1)) V) have weak conservation
properties ([2]). For more details see [3], [4].

2. Theoretical results

Since the work of Kerkhoven and Jerome ([7], [6], and the references therein)
it has been known that, under appropriate assumptions, Gummel’s map G is
a contraction (on an appropriate space) for fixed h, provided the applied bias
o = max{|al, ||} is sufficiently small, where ¢ = min; a; and & = max; 0.
Since numerical device modellers are often concerned with algorithmic complex-
ity (i.e. with the cost in CPU time for a specified accuracy), it is also of interest
to study how the Lipschitz constant of G changes as the mesh is refined. In [3]
we have studied this question using a refinement of the techniques of Kerkhoven
and Jerome. We also make use of a discrete Sobolev inequality well-known in
the domain decomposition literature, namely that the uniform norm of an arbi-
trary element of S;, (which vanishes at least at one point of ) can be bounded
in terms of its H'(f)) seminorm, where the constant of proportionality grows
logarithmically with % as the mesh is refined (see, for example [1], [5]). Let
B denote the set {(V,W) € (S3)? : @ < V,W < @}, equipped with the norm
I(V,W)lls = VIl + Wz ). Then we have the following result.

THEOREM 2.1. Let 7 = 0 in (1.2),(1.3). Then, G : B — B and for each
M > 0 there exists a constant ¢ > 0, independent of A, such that for all
(Vi,W) e B, i=1,2 and all @ < M, we have

GV, W) - G(V2, W2)||5 < Co(l —log i) /?|(V, W) — (V. WF)|l5.

The assumption 7 = 0 plays a crucial role in the proof. It yields a discrete
maximum principle for the solutions of (1.5), (1.6) which in turn implies that
G : B — B. This assumption, which is made by all the other convergence
analyses of Gummel’s method of which we are aware, can be physically jus?iﬁed
to some extent for devices with small current flow. However in general r is .an
essential part of the physical model and cannot be neglected. Thus it remains
an important open question to extend the present analysis to include 7.

Theorem 2.1 shows that the convergence of Gummel’s method only degrades
logarithmically with A as the mesh is refined, for fixed a. Inside each Gummel
iterate we have to solve the semilinear problem (1.4). Since this may be regarded
as singularly perturbed with respect to the small parameter A., standard analyses
of Newton’s method will predict a convergence ball with radl'us dependent on A
{as well as k). Instead in [3], [4] we exploit the monotonicity fﬂ (1.4) to devise a
monotone quasi-Newton scheme with an arbitrarily large radius of ‘comlergence.
To introduce this, think of (1.4) as the problem of finding a solution ¥ to the;
nonlinear problem F(¥) = 0, where ¥ denotes the vector of %10&&1 values o
¥ € S,. Let J(®) denote the Jacobian of F. Then our method is:
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o Assume we have lower and upper solutions A®, ©° which satisfy
A’ <° and F(A®) <0< F(Q°).
e Then, for k > 0, set
AL = AR _ (JRIR(AF) gnd QFH = QF — (J5)LF(QF),

where J* := max{J(A¥), J(©2¥)}, and the maximum is taken elementwise. It
is shown in [3] that A°, Q° (which are bounded independently of k) are easy
to construct. For such starting vectors we prove in [3] the following (quadratic,
mesh independent) convergence result.

THEOREM 2.2.  The sequences {A*}, {*} 60nverge to the same limit ¥,
which is the unique solution of F{¥) = 0. Moreover

lRFH — AR, < O)1RF - AF|3, k>0,
with a constant C depending on A\ and § but independent of A and k.

The proof of this result makes use of the monotonicity of the discretization
of the zero-order term in (1.4). This property is present in the undiscretized
equation (1.1) and has been preserved through the use of mass-lumping in the
discretization. Thus F' is monotone, but unfortunately F is neither convex or
concave on any domain which contains the solution, and so the results of [9] on
monotone Newton methods cannot be used. The special quasi-Newton method
defined above gets around this difficulty and the results obtained can be thought
of as a generalisation of those in [9].

3. Inner iteration, domain decomposition

Each step of the iteration (1.4)-(1.6) (combined with the quasi-Newton method
for (1.4)) amounts to the finite element approximation of a mixed boundary value
problem for a symmetric linear elliptic second-order PDE, with coefficients which
may suffer severe (finite) jumps across narrow interior layers. For example in a
simple p — n diode with no applied bias at room temperature, the potential 1
has a layer around the p—n interface in which 1 changes from about —18 to +18
[8]. Consequently, for small bias, exp(1) —v) varies between 1078 and 108 in this
layer. This jump is correspondingly present in the coefficient of the discretized
equation (1.5), and the associated linear system is thus severely ill-conditioned
(similarly (1.6)). It is essential (even for two-dimensional applications) to find
preconditioners which mollify the effects of these jumps.

Fortunately the theory of additive Schwarz methods provides us with a rea-
sonable solution of this problem and also yields algorithms which are readily
parallelisable. We adopt here an approach analogous to that proposed in [10].
Each of the finite element problems is equivalent to a large sparse symmetric
positive definite (SPD) linear system. To solve this we first eliminate locally
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the unknowns at interior nodes of substructures, yielding a new system Sz = ¢
(where & now contains the unknown nodal values on the substructure bound-
aries, and § is the (SPD) Schur complement of the original system. We solve
this latter system by the preconditioned conjugate gradient method (PCGM).
The action of S can be computed by many local matrix-vector products plus
nearest neighbour addition without assembling § explicitly.

Our preconditioner § is well-known among domain decomposition enthusiasts
and goes back at least to the work of Bramble, Pasciak and Schatz [1]. It consists
of the following steps: (i) For each substructure edge (except those at which
essential boundary conditions are applied), invert the minor of S corresponding
to interior nodes of that edge, and (ii) Invert the restriction of § to the coarse
grid, with grid transfer operators defined by linear interpolation and its adjoint.
Then add the results of (i) and (ii). Using a refinement of the elegant additive
Schwarz analysis (e.g. [5], [10]), we can show that the condition number of
8718 is bounded by C(1 + log(H/h))?, with C independent of H and h and
also independent of the jumps of the coefficients of the underlying PDE across
substructure boundaries.

Our implementation is on a MasPar MP-1 data parallel machine with 1K (=
1024) processors, arranged in a 32 x 32 array. We assign a (small) substructure
to each processor. Computation of the action of S then requires many local
actions of Schur complements on substructures, followed by local addition across
substructure boundaries. This fits naturally into the “massively parallel” pro-
gramming model. Important questions then arise concerning the implementation
of the preconditioner, especially the coarse grid problem (which is still large and
may be almost as badly conditioned as S). Although this question merits further
research, we have chosen in the present work to use (inner) iterations for both the
local edge solves and for the coarse grid solve. After extensive experiments we
concluded that approximate inner solves have a detrimental effect on the perfor-
mance of the (outer) CGM and consequently we have solved the inner prcb?e.ms
to (essentially) machine precision also using CGM. In addition we precondition
the coarse grid problem by diagonal scaling. All inner iterations can be done
by parallel local operations. For example one multiplication by the coarse-grid
operator involves many parallel 4 x 4 multiplications and local addition.

At present we have experiments only for uniform grids. The unit square
is divided into m x m subdomains, each of which contains a uniform mesh of
triangles with n x n interior nodes. Various tests have been performe‘d‘ (8],
[4]) on model scalar problems which show that the number of preconditioned
outer CGM iterates predicted by the theory is sufficient for comrez;"ger;ce. ;\Iore
interestingly, we find that CPU time only increases very modestly wxﬂ?. the size of
coefficient jumps across substructure boundaries, and that the aigonfhm scaiges
nicely with machine size: With m fixed, the solution time grows ‘thh Ofn )A,
which is the time needed for (local) matrix-vector multiplication with the {full)

Schur complements.
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As a more challenging problem we have solved the semiconductor problem
(1.1)-(1.8) in the case of a reverse biased p—n diode. Full details of the parameter
values and device geometry are in [3]. With an applied bias of 0.02 volts and
with r» = 0 we obtained the results in Table 1.

m | n | Quasi-Newton its | Gummel its | Time (s)

8|1 54 8 341

1611 55 8 798

3211 56 8 1666
TABLE 1

The number of quasi-Newton iterates given is those required for the solution of
(1.4) in the first Gummel iterate. After that very few are required. This number
remains fixed as the mesh is refined (as implied by Theorem 2.2). Moreover
the number of overall Gummel iterates also appears unaffected by the mesh
refinement, which is slightly better than that predicted by Theorem 2.1. Since
our machine has a 32 x 32 array of processors, the growth in solution time can
be attributed almost entirely to the cost of solution of the coarse grid problems.
Qualitatively similar results were obtained with the recombination r switched
on. Full details are in [3], [4].
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