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Two-Grid Methods for Mixed Finite Element
Approximations of Nonlinear Parabolic
Equations

CLINT N. DAWSON AND MARY F. WHEELER

ABSTRACT. Mixed finite element approximation of nonlinear parabolic equa-
tions is discussed. The equation considered is a prototype of a model that
arises in flow through porous media. A two-grid approximation scheme
is developed and analyzed for implicit time discretizations. In this ap-
proach, the full nonlinear system is solved on a “coarse” grid of size H.
The nonlinearities are expanded about the coarse grid solution, and the
resulting linear but nonsymmetric system is solved on a “fine” grid of
size h. Error estimates are derived which demonstrate that the error is
O(RF+1 1 g2(k+1)—d/2 1 At), where k is the degree of the approximating
space for the primary variable and d is spatial dimension, with k > 1 for
d > 2. For the RTp space (k = 0) on rectangular domains, we present
a modified scheme for treating the coarse grid problem. Here we show
that the error is O(h + H3~%/2 + At). The above estimates are useful for
determining an appropriate H for the coarse grid problem.

1. Introduction
In this paper, we consider the mixed finite element approximation of p satis-
fying

ap

(1) bt V. (K(p)vp) = f(z,t), onx (0,7},

with initial condition

(2) p(x,0) = p°(z), on g,
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and boundary condition
3) (K(p)Vp)-v =0, on 8Q x (0,71,

where Q C IR?, d < 3, is a bounded, convex domain with C! boundary 0, v
is the unit exterior normal to 012, and K is a symmetric positive definite tensor
and K : Q x IR — IR**%. We further assume that there exist positive constants
K, and K* such that for z € IR?

(4) K. |z |?’< 2'K(z,8)2 < K* || 2 ||?, forz € Q and s € IR,

and that each element of K is twice continuously differentiable with derivatives
up to second order bounded above by K*.

Equation (1) is a simplification of a nonlinear parabolic equation (Richard’s
Equation) which arises in the modeling of two-phase flow in porous media, where
the two phases are air and water [3]. The major difference between Richards’
Equation and (1) is in the time derivative term, where p is replaced by a nonlinear
function (p). The function ¢'(p) may be zero and this complicates the analysis;
however, this difficulty may be handled by techniques given in [1]. For brevity,
we do not consider this generalization here.

Let LP(Q) for p > 1 denote the standard Banach space defined on (2, with
norm || - ||,. We shall denote by W™P () the standard Sobolev space (m partial
derivatives in LP) with norm || - || p. The W™P norm for vectors will be un-
derstood to be for each component. When p = 2 we omit the subscript on the
norms.

Let (-, ) denote the L?(12) inner product, scalar and vector. Let V = H(div;2) =
{ve @) :V-ve2()}, V=Vn{v v=0}and W =L*Q).

As in [2] we define the mixed weak form of (1) as (p,I,¥) € W x V x 1%
satisfying

) P+ (VT = (fu), weW,
(6) (T,v) - (p,V-v) =0, veV,
(7) (‘I’,'U)=(K(p)F,’U), veV.

We consider finite-dimensional subspaces W;’f Vh’“, and th of W, V, and V,
respectively (they may be Raviart-Thomas-Nedelec spaces of index k RT} [9, 10]
or Brezzi-Douglas-Marini spaces of index k [4], for instance) associated with a
quasi-uniform family of polygonal decompositions of ) by triangles (tetrahedra)
or bricks with diameter h. For simplicity in the discussion below, we will drop
the superscript k.
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Let N > 0 and At =T/N, t* = nAt, and 9" = ¢(-,t"). In our analysis we
shall use the following norms: for X a normed vector space defined on €,

N
lelleomx = Y Atllen|[%)3,
n=1

HSDHzoo((o,T);X) = 121323\] Il¢™ ||,

and

T
lellzzomy = ( / o™ D)%)t

The discrete time mixed finite element approximation to (5)-(7) is defined as
follows: Given (pp,T%,90) € Wy X Vi x Vi, forn=1,...,N, let (o}, T%, ¥7) €
Wh X Vp, x V4, satisfy

n__ n—1
(8) (‘ph—AIZL‘,’wh) + (V . ‘Ilﬁ,wh) = (f",wh), wp, € Wh,
9 (T, vn) = (7, V-vp) =0, vy €V,
(10) (\1,271}/1) = (K(pZ)FZ:Uh)) v, € Vh-

This procedure is based on a modification of the standard mixed finite element
procedure and was introduced for linear elliptic problems in [2]. For brevity,
a proof of existence and uniqueness of the solution to the nonlinear algebraic
system (8)-(10) is not given; the reader is referred to [7] since the proof closely
follows the argument of Milner for standard mixed method approximations to
nonlinear elliptic problems.

Instead of solving (8)—(10) each time step for a fine mesh h we shall also
consider two two-level procedures, both of which involve solving the nonlinear
problem only a coarse grid of diameter H >> h. This work has been motivated
by the work of Xu [12] for Galerkin procedures applied to nonlinear elliptic
equations. In the simplest scheme, the fine mesh discrete problem is linearized
by evaluating K (p) at the coarse mesh solution pg. In the second scheme K{p)
is approximated by a first-order Taylor expansion about gy, a correction by one
Newton iteration on the fine space. We shall show that the simplest scheme yields
no improvement in accuracy over the coarse grid approximation. The second
scheme; however, yields substantial improvement and is a viable computational
approach.

This paper is divided into five sections. Notation and approximation assump-
tions are given and error estimates are derived for (8)—(10) in Section 2. The two
two-level schemes are defined and estimates derived for both in Section 3. A new
procedure based on postprocessing the coarse grid solution and then applying a
Newton correction is defined and analyzed in Section 4 for the space RT;. In
Section 5, we give conclusions and extensions.
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2. Notation and Approximation Results

We shall employ several projection operators.
Denote by P the L? projection operator. More precisely, let Py, : L*(Q) —
W, and Py, : (L2(Q))? — Vi, where for g € L*(Q),

(11) (PWhg7wh) = (g’ wh): wp, € Wha

and for g € (L?(2))4,

(12) (Pv,q,vn) = (¢, vr), vn € Vp.

For convenience we shall set §, = Pg, where P is understood to be Py, or Py,
depending on whether g is a scalar or vector quantity.

We shall use the well known II;, projection for mixed finite element ap-
proximation spaces. We shall assume that there exists a projection operator
I}, : (HY(Q))¢ — V}, such that

(13) (V- Tag,wp) = (V- g,wh), wh € Wh.

We assume that

onto
—

V‘Hh=Pw'h, vV W’h.

We also assume that the following approximation properties hold.
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Approzimation Properties A:
e There exists a positive constant () independent of h such that

(14) lu — Dpull < Qllufl-h", 1<r<k+1,
(15) lp = pull < Qllpll-h", 0<7r<k+1,
and

(16) lp — Prllcc < QlIpllooh™, 0<7r<k+1.

e Given T € (W1>°(Q))? there exists a Y5, € V;, such that
(17) 1T = Thll < QAY(l1,00-

Finally, we assume the following inverse property on V;, holds, namely, for
v € Vh,

(18) lonlloo < flomlli=/2.

These assumptions are known to hold for the Raviart-Thomas-Nedelec and
Brezzi-Douglas-Marini spaces mentioned above.

In this paper C shall denote a generic constant. For convenience we will also
assume that the solution is smooth and that the maximum index of convergence.
k + 1 is attained.

We rewrite (5)—(7) with ¢ = ¢t™. Using the definition of 5, the II; projection,
and the assumption that V -V}, ¢ W}, we deduce that

~n ~n—1

(19) (Ao Lh ) 1 (V- TR, w3) = (7, un) + (¢ un), wn € W,
(20) (@2, vn) — (B3, V - vp) =0, vp, € Vi,

and

(21) (Hh‘I’n,Uh) = (Hh‘I’n — \Il”,vh) + (K(p")I‘",vh), vy € Vi,

where €” is a time truncation error of order At.

We now derive an error estimate for the algorithm (8)-(10).

Set u* =g —ph, (" = f‘}: —TI'%, and x" = I, ¥" — ¥}. Subtracting (8) from
(19), (9) from (20), and (10) from (21) and in the resulting equations using the
test functions wy, = p®, v, = X", and vy = (™ in the first, second, and third
equations, respectively, we obtain the error equations

n_ ,n—1
(22) (%: ﬂn) + (v " thun} = (Ens ﬂn)~

(23) € x™ =W V-x"),
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and
(", ¢") = (Mpe™—9".¢") + (K(pp)¢",¢™)
—((K(pp) — K(p™))I'™, (™)
(24) +(K (pp)(T™ = T7),¢™).

Combining (22) - (24), applying smoothness and boundedness assumptions on
K(p), and Hélder’s inequality we obtain

S 7 = 1= 2]+ K o) 2
< () 4 WG
< Sl + Sl + (e — v, )
+H((K (o) — K(7)I™, (") + (K (pp) (T = I7),¢™)
(25) < gle P+ e + sl
+ O Imw™ — @7 + B~ TP + (" ~ 1 T

where 6§ < K,. Multiplying (26) by At and summing on n,n = 1,2,...,N and
applying Gronwall’s Lemma, we see that

N
™12+~ At (oR) /2|

n=1

N
(26) <Y AT — |+ B -T2 + (16 - AR I )]

+Hpl)? + CAE.

Using (27), Approximation Properties A, and the triangle inequality we deduce
the following theroem:

THEOREM 1. Let Vi, = V¥, Vi, = V¥, and Wi, = WF and define the triplet
(P2, T2, U7) € W x VE x Vikby (8) - (10), for n > 1. Assume that the Ap-
prozimation Properties A hold. Take pf) = pn(-,0). Then there exists a positive
constant C, independent of h such that

N
@7) llow = oIl + (3 MK (pp) /20 —T™)|P)7 < C(R*F' + At).
n=1

3. Two-Level Schemes

We first consider a scheme based on a correction by one Newton iteration on
the fine space. More precisely, we solve (8)-(10) on a coarse mesh with h = H
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and then solve the following linear system for (ﬁ’,},f‘ﬁ, @Z) € Wi, x Vi, x W, for
n>1and h << H:

-1

(28) (ph_Apih_ wh) -+ (V . \ilﬁ,wh) = (f",wh), wp, € Wh,

(29) (f‘ﬁ,vh) = (ﬁZ’ \& ’Uh)a Up € Vha

(30) (%, vn) = (K(of)TH, on) + (K" (0E)TH (R — pEr)svn)s  vn € Vi

Equation (30) is motivated by the Taylor expansion

K™ = K(g)T™ + K (0T (0" — o) + Z (- g,

for some o™ between p" and p%.

We now derive an estimate for this two-level scheme. Set {™ = pj — of,
vt = f‘g - f‘}t‘, and 0" = I, ¥™ — \iﬂ,z

Subtracting (28) from (19), (29) from (20), and (30) from (21), letting wy, =
£, v, = 0", and v, = V", in the first, second, and third equations respectively,
we obtain

(31) EE (706 = ()
(32) (,Un, 0n) - (£n7 v an)’

and

(33) (67,v") = (L¥"—¥",u") — (K(p™) ([} —T7),v™)

HE (") + (€ + (0" ~ K (o), ™)
HK (o) (0" — PR (R = TR), 07)
50" = B K (@), ).

Combining (31)—(34) and using Hélder’s inequality, we deduce that

S I = €42 + 1 o) 20 P
(34) <| (€7, ¢") | +8]lo 2
+ Ol 1€ (T oo + (T — T™)lloc)
+C [T, @™ — |2 + 5 - 7P
+l(e” = AT
+1l(e™ — o3 (g~ TH)I?
(" = P37

where § < K../2, and C = C(K*, K,).
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We now choose N to be the index corresponding to the maximum of ||£"|| for
n=1,...,N. Multiplying (35) by At and summing from n =1 to M,M < N,
using Approximation Properties A and Theorem 1, we see that

M
€212 = €012 + > Atl| K (o) /20" 17

n=1

M
(35) < CARlpuell3a (o) L2y +6 D Atllv"||? +T* + T

n=1
. M N
+C [Z ALE P + 1907 0.1y, e+ P2ETD + HF“l22((0,T),H’€+1)h2(k+1):| )
n=1 :

where T™ and T™** are defined as follows.
First, by Theorem 1 and the inverse assumption (18)

M 3 /M ) 2
™ = K*[&¥] (Z Altllvnllz) (Z At|[(T —I"ﬁ)llio)
n=1 n=1

M 2
K¢ (Z At||v"||2) (H-92(H* + At)).

n=1

(36)

IA

For d > 2, k > 1, H and At can be chosen sufficiently small so that

* 1 i, K Y
(37) " < Sl + - ;Atllv”||2~
Moreover,
M
™ = ¢ X;(Il(p” — PRTHI +11(6™ — o) (T — TE)IP

+HI(" — PE)PTRIP) At

M
< Y Al - IR,

n=1

+o" — BhlI%IITE — 17|12

+(118% — philloo + 116~ — ¥llo) T — T |12
H1o™ = pEll% 110" — PR |PITRIZ,).

Thus, from Theorem 1 and approximation properties,

M
™ < O*ZAt[h2("+1)+(H—d/2(Hk+1 + AY) + HEFVR(HF 4 AP

n=1

(38) +(H™Y2(HE 4 AL)2(HFH 4 At
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Here Cx depends on “pHZZ((O,T);W(lvFl),oo), ”F“lz((O,T);lem)a ”T”l?((O,T);H(’H’l)):
K* and K,.

Taking M = N, and for d > 2 taking k > 1, noting that £ = 0, and applying
Gronwall’s Lemma to (36) we see that for At and H sufficiently small,

(39) ”§N|| < C(RFY 4 At + HZE+2-/2),
Combining (36) - (39), taking M = N, we deduce that

N
1N+ O Atl|K (o3) 1/ 20m||%) 3

n=1

(40) < C(CH)(RFT + At + HZFH2-4/2),

Applying the triangle inequality and approximation properties, we obtain the
following theorem:

THEOREM 2. Let Vi,'= V¥, Vi, = V¥, and Wi, = W} and define the one
Newton correction triplet (57,17, ¥7), € Wk x ViF x VFby (28) - (30). Assume
that the Approzimation Properties A hold, and take 3 = pn(-,0). Then there
exists a positive constant C**, independent of h, such that

N
I8 — Nl + Q_ AtIE (o)A (T] — T3
n=1

(41) S C**(hk+1 +At+H2k+2_d/2).

C** depends on ”p”l2((0’T);VV(k+1),oo), ”P”lz((O,T);lem); III‘”lz((O,T);H(k-Q-l))g K*
and K.. .

We now consider the simple two level scheme: solve(8)—(10) on a coarse mesh
with h = H and then solve the following linear system for (g}, ', ¥7) € W}, x
Vi xVyforn2>1,

=n __ =n—1 _
(42) (”"—A‘-;L,wh) + (V- 02,w,) = (F*,wy), wp, € Wh,
(43) T, vh) = (PR, V - vn), vn € Vh,
(44) (¥h,vn) = (K (o) Th,vn)  vn € V.

We now derive an estimate for this two-level scheme. Set o™ = §f — pf,
g* = I —T7, and A\* = I, U™ — U7. Subtracting (42) from (19), (43) from
(20), and (44) from (21), letting wj, = o™, v, = A", and v, = §7, in the first,
second, and third equations respectively, we obtain

o™ — an—l

(45) (T,an) + (V- 2% a™) = (",a")

(46) (6%, A") = (o, V- A7),
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and

(B = (U™ — ¥, %) — (K(o")(Th —T7),67)
(47) +(K (05)8" B™) + (K (07) = E(0}))T7, 87)-
Combining (45) - (47) we obtain

N
|2 + 3 ALK (o)% 8™
n=1

(48) < C(lof — p"IP +IT™ = TRI1” + A8%).

THEOREM 3. The error bound for the simple two level scheme defined by (42)
- (44) is given by

N
1Y — oVl + (O At K () (T7 —T™D)?
n=1

(49) < C(HF! 4 At + BFH).

In the estimate (49) we observe that solving a linear problem on a fine grid
with no Newton-type correction yields no asymptotic improvement over a coarse
grid solution. This is different from the result obtained for Galerkin methods for
nonlinear elliptic equations [12].

4. Newton Correction for RT; Spaces

Our previous results did not treat the case k = 0 for d > 2. Here we assume €2
is a rectangular parallelepiped, and we restrict our attention to the RTy (k=0)
space defined on a tensor product grid. We also assume K is a diagonal matrix
or the mesh is uniform.

In this case, the space W}, is the space of discontinuous piecewise constants
defined on a tensor product partition. The ith component of the velocity field V;,
is a continuous piecewise linear polynomial in the ith direction and discontinuous
piecewise constants in the other directions.

The mixed finite element method for the RTp space with special numerical
quadrature rules has been shown [11] to be equivalent to cell centered finite dif-
ference methods. The results obtained here are applicable to the latter methods.

A discrete time mixed finite element approximation for the RTy space is de-
fined as follows: Given (p),T9,¥0) € Wi x Vj X Vi, for n = 1,...,N, let
(o2, T3, UT) € W, x Vi, x Vi, satisfy

n—1

(50) ('ph—-;A"':‘L_,’wh) + (V . \Ilﬁ,wh) = (f",wh), wy, € Wh,

(1) (@7, 0n) — (02, V -vp) = 0, v €V,

(52) (‘I’Z,Uh) = (K(’P(pZ))FZavh)a Up € Vh-
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Here P : W), — M, is a “postprocessing” operator, where Mj, denotes the space
of continuous bilinears (d = 2) or trilinears (d = 3) defined on the same partition
as the RTp space. For d = 2, P linearly interpolates the four adajacent cell
centered values to the vertices of the tensor product grid. A similar procedure
can be defined for d = 3. This postprocessing operator is motivated by well-
known superconvergence results for the scalar variable p at the center of each
grid block {5, 8].

In deriving an error estimate for this algorithm we proceed as in Section
2; however here we will employ superconvergence results for the BT} spaces
on rectangular elements. It is known for example that the II; and the Py,
projections are super close, namely O(h**2) in L? [8, 6]. It is also known that
two weighted L? projections are O(h*+2) provided the weight functions are C*.
We shall use these results in the analysis given below.

Set p™ = pr—pit, (" = f‘,’: —I'7, and x™ = II, 9" — ¥, Subtracting (50) from
(19), (51) from (20), and (52) from (21) and in the resulting equations using the
test functions wy = p”, vy, = X, and v = (™ in the first, second, and third
equations, respectively, we obtain the error equations

n __ 4,n—1
(53) (e i) + (7 ) = (€, ),
(54) €™ x") = (™, V-x"),
and

(x"¢") = T =¥, ¢") + (K(P(AR)C",C™)
~((K(P(op) = K ("), ¢")

(55) +HE(P(R)(EF — T7), ¢
Here we have defined I'? by
(56) (E(") (T =T"),0p) =0, vp € Vi

Note we have also replaced " on the right side of (55) by its L? projection.
Combining (53) - (55), applying smoothness and boundedness assumptions
on K(p), superconvergence, and Holder’s inequality we obtain

Sl = I P+ K (PR 2
< (T ) KPR
< 1P+ Slen? + (e — 93.¢7)
HKP(oR) — K())ER, ™) + (KPR — FR).¢™)
(57) < O +81C7 + © [ + A
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where § < K. Here we have also used the fact that
I1P(sR) — pI| < CH*.

Multiplying (57) by At and summing on n,n = 1,2, ..., N and applying Gron-
wall’s Lemma, we see that

N
(58) e+ D ALK (oR) 2P < 601 + O(AE + R2FHD),
n=1
Using (58), Approximation Properties A, and the triangle inequality we deduce
the following theroem:

THEOREM 4. Let Vi, = V2, Vi, = V0, and W), = W}, that is, the RT, spaces
defined on a tensor product grid, and define the triplet (o7, T, ¥h) € W,f X V,f X
Vik by (50) - (52). Take 0 = pn(-,0). Then there exists a positive constant C,
independent of h such that

N
(59) Nl — ol + O At K () /2T — TRIP)? < C(h* + At).
n=1
We now proceed as in Section 3, and let p% be defined by (50)-(52) with
h = H. The proof is identical to that given above accept for the bounds on the
terms T* and T**. These bounds can be modified by simply replacing H**! by
H**2: je. since k = 0, we replace H by H?.
We obtain the following theorem:

THEOREM 5. Let Vi, = V2, Vi, = V2, and Wy, = W) and define the one
Newton correction triplet (57,17, ¥%), € WP x V2 x V2by (28) - (30). Assume
that the Approzimation Properties A holds, and take §} = pn(-.0). Then there
erists a positive constant C, independent of h such that

N
I8 — o™l + (Y ALK (o7) /2 (TF — T™)|?)?
n=1

(60) < C(h+ At + H374/2),

5. Conclusions and extensions

We remark that we even though we only considered the case k = 0 in Section
4, we have established superconvergence for the RT} spaces, k > 0, for the
scheme (50)-(52). The two-level scheme with the Newton correction outlined in
Section 3 could be extended to multiple levels with multiple corrections. We
are currently investigating these possibilities. Computational results for the
algorithms outlined here are also in progress.

We also remark that one may be able to improve the rate of convergence given
in Theorem 5 for the lowest-order case by substituting P(p7,) and P(py) for pg



TWO-GRID METHODS FOR NONLINEAR, PARABOLIC EQUATIONS 203

and g7. Preliminary theoretical results indicate that this may give superconver-
gence for g7 at the centers of each cell of order K2 + H*~%/2 4 At.

1
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