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Cascadic Conjugate Gradient Methods
for Elliptic Partial Differential Equations:
Algorithm and Numerical Results

PETER DEUFLHARD

ABSTRACT. Cascadic conjugate gradient methods for the numerical solution of
elliptic partial differential equations consist of Galerkin finite element methods
as an outer iteration and (possibly preconditioned) conjugate gradient meth-
ods as an inner iteration. Both iterations are known to minimize the energy
norm of the arising iteration errors. The present paper derives a unified frame-
work in which to study the relative merits of different preconditioners versus
the case of no preconditioning. Surprisingly, in the numerical experiments the
cascadic conjugate gradient method without any preconditioning (to be called
CCG method) turns out to be not only simplest but also fastest. It appears .
that the cascade principle in itself already realizes some kind of precondition-
ing. A theoretical explanation of the observed iteration pattern will be given
elsewhere.

Introduction

This paper deals with cascadic preconditioned conjugate gradient methods —
hereinafter called CPCG methods — for the solution of general elliptic boundary
value problems for partial differential equations. Any such method is based on the
so—called cascade principle which involves the cascade-like numerical solution of a
sequence of linear systems of equations associated with a sequence of finite element
spaces on successively finer grids. In this setting, the coarse grid linear system (up
to moderate size) is assumed to be solved direcily — say, by a (sparse) elimination
technique. Finer grid systems are solved iteratively by preconditioned conjugate
methods — hereinafter called PCG methods. Starting values for the PCG iteration
on a given discretization level are just the (approximate) finite element solutions
of the previous level. The successive finite element spaces are constructed adap-
tively based on local energy error estimators. Within each discretization level the
PCG termination criterion aims at keeping the iteration error below the expected
discretization error.
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In former realizations of this concept [9, 5, 10, 12, 13], the whole iteration
control mechanism was based on some cheap but not very satisfactory energy error
norm approzimation, which led to a close coupling between the local error estima-
tors and the PCG termination criterion. That approximation has been recently
replaced by another more satisfactory one, which is also cheap — compare [7] or
the more thorough discussion in [8]. In Section 1, the new energy error control is
applied to the (nested) CPCG iteration as a whole. The sequence of Galerkin ap-
proximations on successively finer grids is interpreted as an outer iteration, which
minimizes the energy error norms over a sequence of finite element spaces. Arbitrary
PCG iterations, which minimize the energy error norms over a sequence of Krylov
spaces, are interpreted as inner iterations. An efficient strategy for the matching
of inner versus outer energy error norms is developed. In Section 2, the proposed
CPCG method is illustrated by numerical experiments on the Laplace equation.
Comparison runs with the hierarchical basis preconditioner due to YSERENTANT
[15], the multilevel preconditioner due to Xu [14], BRAMBLE, Pasciak and Xu [6],
and no preconditioning are presented. Two different CPCG modes are exemplified,
an adaptive mode — including an adaptive mesh refinement strategy in the spirit
of [1] based on the edge oriented error estimator of [9] — and a uniform mode. A
convergence analysis explaining the surprising numerical findings of Section 2 will
be given in a forthcoming paper.

1. Energy Error Control in Cascadic Preconditioned CG Methods

Consider an elliptic PDE problem given in the weak formulation
(1) a(v,v) ={f,v), weH,

wherein H is the appropriate Hilbert space, u € H is the solution to be computed,
a{-, ) is a symmetric H-elliptic bilinear form with
| 1
@ I-lla = a(, )2
the associated energy norm, and (-,-) the Lg inner product. Consider further a

Galerkin method for a sequence of nested finite element spaces So C S; C...S; C
H. This generates a sequence of linear systems

(3) Aju_,- =bj, j=0,1,... ,1:.

All matrices A; are symmetric positive definite so that PCG methods can be ap-
plied. Let n; = dim S;. For ease of writing we will not distinguish between the
solutions u; of the Galerkin equations within subspace S; and the exact solutions

u; of the corresponding systems of linear equations (3). The meaning will be clear
from the context.

1.1. Galerkin method as outer iteration. At discretization level j, let

G=llu-wl% 6 =llui —u)%
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denote the various discretization error norms. Then, for nested spaces S;, the
orthogonality relation

(4) €+1=¢ — b, .
is well-known to hold. For an appropriate sequence of subspaces of the Hilbert

space H we have convergence u; — u and therefore €, = 0, so that the recursion
(4) can be solved to yield

o0
(5) €j=z:§[, Jj=01,...

=3
As for the convergence of the FE method, i.e. the outer iteration, we will naturally
require the theoretical termination criterion

(6) & < TOL ¢,

with some error tolerance parameter TOL to be prescribed by the user and some
index ¢ to count for the finest actually computed discretization level. Upon pro-
ceeding as in [7, 8], we will try to replace the not implementable termination
criterion (6) by a sufficient and implementable termination criterion. As for the
above right-hand side, we will replace ¢y by the lower bound

1
@) e = fluss1 ~wold =0 — €41 =8 < eo.
=0

As for the left-hand side of (6), let © denote a contraction factor understood to
satisfy

€41 < Gej, O<«1 i>Je
for some threshold index jo. Then equation (4) implies that

_ )

(8) Ej_<_ej=1j9.

For illustration purposes, consider the Laplace equation on some polygonal do-
main Q in d-dimensional space with d == 2 or d = 3. This means that H is now
some space H} wherein the subscript 0 indicates the fact that we assume Dirichlet
boundary conditions on a sufficient part of the boundary 82, In this case we know
that uniform mesh refinement and lnear finite elements in the regular case lead to

! _ .4
(9) 8= Z, €= §5j.
In the case of adaptive meshes — assuming energy ervor equidistribution and once

more linear finite elements — we expect a comparable estimated contraction factor

) sy \ 2/
(10) eéej=(————’*) >
g

on the basis of theoretical results of [2]. The latter choice is used in the numer-
ical experiments below. Further improvements of this factor should be possible
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in close combination with the adaptive mesh refinement strategy based on local
extrapolation [1]. Such a device is presently under investigation.
Summarizing, we end up with the sufficient condition

(11) & < TOLeS

for termination at finite element level i. The implementation of this criterion re-
quires the iterative quantities 6;, which — as we will see below — can be obtained
cheaply from the PCG iteration.

'1.2. PCG method as inner iteration. In previous versions of cascade type
algorithms — such as [9, 5, 10] — the criterion (11) has been used in connection
with the edge—oriented discretization error estimator due to [9]. In what follows,
an alternative technique based on considerations from [7, 8] will be worked out.

With the outer iterates u; from the Galerkin method, we now need two indices
ujk for the PCG iterates. On levels j = 1,2,... 1, the iteration index k formally
runs within k£ = 0,... ,n;. On the coarse grid level j = 0, direct linear equation
solving supplies some uo assumed to be exact. On finer levels j > 0, the cascade
principle realizes

Uj 0 = Uj—1, uj = uj, for n=n,.

It is known from [7, 8] that the iterative energy error contributions
Bige = g1 ~ ujell
are cheaply available on levels 7 > 0. Moreover, since

n_.,-—l
lleg — wimalh = g —wgolll = > lujesr — usnll,
k=0
we can express the iterative discretization errors as

nj—1

(12) b—1 = lluj —ujald = D 8k
k=0

In words: The (ezact) PCG iteration on discretization level j supplies the energy
norm of the iterative discretization error of the preceding level  — 1.

In actual computation, things are slightly more complicated, since instead of
the above exact PCG iterates u;x we have perturbed iterates ;s obtained from
truncated PCG iterations, which yield perturbed Galerkin approximations ij. As
in the exact case, we start from the direct solution @ = ug. On finer levels j > 0,
however, we continue according to

(18) @0 =By, @; = il m41 for some truncation index m = m;.
With the cheaply available quantities

85 = 101 — Byl
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instead of the §; we obtain the analog of result (12) now in the form
m;
(14) Bim1 =iy — i1l =Y s
k=0
The associated discretization errors
(15) & = llu - 5013
can be seen to satisfy

(16) & = Jlu — @;]|% > minges;llu— v = JJu — 4[4 = ¢;.

Throughout this paper the FE spaces are (technically) assumed not to depend on
the sequence of truncation indices of the PCG iteration — an assumption which is
only realistic if utmost care is taken in the realization of the whole scheme including
the adaptive mesh refinement strategy. As in (4) the orthogonality relation

(1) G =8 —0;

holds — this time not as a consequence of the Galerkin minimization property,
but due to the cascade property (13) and the orthogonality of the PCG iterative
corrections within the Krylov spaces also in the perturbed case. As in the exact
case, we want to replace the unavailable term & by computationally available terms
of the form

i
(18) & =35

=0
With & = ¢p — due to the direct solution on the coarse grid — and (16) we obtain

E‘o’) =8 —&r1=¢€—&r1 S € — €1 = 5((1’)'

This means that — in view of sufficiency — the right-hand side term s((f) in the
termination criterion (11) can be replaced by Ef,‘) .

We now turn to the approximation of the left—hand side of (11), which means
that we have to consider an approximation of the quantity €; at the recursive levels
j. Unfortunately, this quantity cannot be bounded on either side by its associated
estimate €;, since the starting values @, for the perturbed PCG iteration differ
from the exact starting values u;o on the finer grids j > 0. Moreover, at level j
only the discretization error 8;_1 for the previous level is actually available. In this
situation, we recur to (10) and (15) to obtain

. =

(19) & =08-1, &1

Accordingly, we approximate the termination criterion (11) by the criterion

19;*53':% <TOL&

1

(20) &=
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to be satisfied at final level . This is now the implementable termination criterion
for the outer iteration to be used for the determination of the actually needed
discretization level 7 according to the user prescribed relative accuracy TOL. (The
terms é; will be returned to the user as recursive discretization error estimate on
level 7.)

We are still left with the decision of how to control the inner PCG iterations
in such a way that the iterative discretization error estimates €; are sufficiently
reliable. In view of [7, 8] we will require a condition of the kind

(21) .1___6-7véL_ < p;©;6;_1  for some truncation index m = m;.

3,
Herein the estimate of the contraction factors 6 ,, may cause difficulties in actual
computation and therefore require some additional heuristics. The safety factors
p; need to be chosen as internal default parameters. In former realizations [9, 5],
the choice j; = const had been made, which led to a condition most stringent on
the final level i. Recall, however, the global error relation

i ™M
(22) G=llu—dli=co—D > b
J=1k=0
This relation seems to indicate that the final level restriction from (21) should
already be observed on coarser levels to avoid unnecessary more costly iterations
on the finer levels. Therefore we suggest to replace (21) by

(23) i _ < pTOL Egj ) for some truncation index m = m;j.

1-6m
This criterion is more stringent on coarser levels. Numerical experiments (with
p= —1% throughout) strongly confirmed the expectation that criterion (23) saves
costly iterations on finer levels compared to the criterion (21). This is now the
desired implementable termination criterion for the inner iteration.

With the two termination criteria (20) for the Galerkin outer iteration and (23)
for the inner PCG iteration, the whole CPCQG iteration error control is now com-
plete. Note that it applies independent of any special choice of preconditioner or
even without any preconditioner.

For the convenience of the reader, we now summarize the whole CCG iteration
(without preconditioning) in the form of a pseudocode — see Tsble 1. The notation
for the CG iteration follows the one given in [7].
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TABLE 1. Pseudo-code: cascadic conjugate gradient method

PROCEDURE CCG (OUTER ITERATION):
input TOL

j=0

while (j < mazLevel)

{

assemble linear system A)b ;
CG(A,u,b);
calculate &;, &
if (& < TOL &) endg;
refine mesk;
i=j+1

}

PROCEDURE CG(A,x,b) (INNER ITERATION):
input j,TOL, p, e
Po=Tog= b— AzOs
oo = (70,70),
k=0 .
while (k < mazIter)
{

= (Apk,pk)’

Ok

1
Thk+1 =Tk + aPe
bk = Ok/ok;
calculate ©; x, §;_1, ;

. 3. . »

if ( 1 _’gj,k < pTOL e((,’)) return;
1

Tkl =Tk — ;;Apk,

k41

Ok+1 = Pht1,Tht1)y  Brt1 = pt

Pr+1 = Tkt1 + Bry1Pk;
k=k+1;

// prescribed tolerance

// conjugate gradient iteration

// termination criterion (20)

// termination criterion (23)
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2. Numerical Experiments

Up to now, numerical tests were only made for the Laplace equation with linear
finite elements, both in 2-D and in 3-D. The picture in 3-D appeared to be essen-
tially the same as in 2-D (though slightly less reliable in the adaptive case). As
computing times and storage requirements for the 3-D test runs blew up consid-
erably, the subsequent illustration is restricted to the 2-D case. Out of the three
test examples given in [7] only one will be considered here for reasons of restricted
space.

Peak Problem. Given the PDE
(24) —du=f,
Dirichlet boundary conditions are imposed such that

u=(z+1)(z - 1)(y + 1)(y — 1)e~ 106"+
/\/\ VAVAY

FIGURE 1. Solution of peak problem on level j = 7, n = 1975
nodes (adaptive mode) and grids on levels j =0 and j = 7.

is the solution.

/\
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The comparative performance of the following three variants of the CPCG algo-

rithm are presented:
— CPCG-HB: algorithm with hierarchical basis preconditioner [15]
— CPCG-BPX: algorithm with multilevel BPX preconditioner [14] , [6]
~— CCG: algorithm without any preconditioner

In the simple case of the Laplace equation, the HB preconditioner is known to
give rise to an O(j2)-bound on the condition number in 2-D — see [15], whereas the
BPX preconditioner is known to lead to O(1) independent of the space dimension ~—
see [11]. In 2-D, the expected numerical efficiency will be nearly the same for both
preconditioners. Based on the subtle condition number estimates of XU [14], the
expectation for the algorithm without any preconditioning would be that it might
be asymptotically disastrous in rather uniform grids (which exhibit a geometric
increase of the number of nodes) and not too bad in highly non-uniform grids
(with an arithmetic increase of the number of nodes).

In actual computation, the explicit formulation of the FE problem (numerical
quadrature for evaluation of inner products), will dominate the whole computing
time. In order to make the differences between the three algorithmic variants
visible, the subsequent comparison runs will mostly quote the pure éteration times
and the number of required iterations. Since the solutions of all examples above are
explicitly known, the directly computed iterative errors and the errors estimated
from the CPCG iterations could be compared: the discrepancies were marginal on
lower levels and tolerable (in most cases) on the finest levels. For this reason, only
the estimated accuracies are docurnented here — which is the realistic case. The
accuracy is measured in terms of the improvement factor from initial to final energy
error norms; since, in the best case, we can expect an iterative improvement of cne
bit of accuracy for the Laplace equation with linear finite elements, all Figures
below will use binary digits. Numerical experiments were run on a SUN Sparc
Workstation 10/41 using the g++ C compiler.

2.1. Adaptive Mode. In this section we will arrange comparative results for
the three algorithmic variants running in the adaptive mode, which means that a
refinement strategy is applied to generate a sequence of possibly highly non-uniform
meshes. Any such mesh refinement strategy will naturally aim at equidistributing
the energy error. In the earlier version [9] of the cascade principle a mean value
strategy due to BANK [3] has been used. This strategy, however, sometimes pro-
duced unsatisfactory meshes in critical examples. Therefore, the more advanced
versions [10] and [5] realized a mesh refinement technique in the spirit of BABUSKA
and RHEINBOLDT [1]. It is based on local ezirapolation of energy error contribu-
tions from the edges as obtained by the edge oriented discretization error indicator
due to [9]. The subsequent numerical experiments are run with a slightly modified
heuristic — for details see [7].
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In Fig. 2 the comparative results for the three codes are represented graphically
in terms of iteration computing times. The surprise is that the code CCG without
any preconditioning is fastest. The comparison in terms of number of iterations is
given in Fig. 3. Obviously, the asymptotic behavior of both CCG and CPCG-BPX
is the same. Between start and end all three variants show some iteration number
bump, coming from the global accuracy requirement (23), which is more stringent
on coarser levels. The bump is largest for CCG and smallest for BPX. The HB
variant ranges in between. The different picture in terms of computing times is
explained by the fact that each CG iteration with BPX preconditioning {even in a
rather efficient implementation — see e.g. [4]) costs a rough factor of 3 more than
each pure CG iteration.

Remark 1. It should be mentioned that the above Fig. 3 does not contradict
Fig. 10, p. 3198 in [5], wherein the effect of BPX preconditioning versus no pre-
conditioning has been exemplified as well. There, however, the iteration has been
continued far below the discretization error. In this setting, the number of itera-
tions without preconditioning drifted off far above the number of iterations with
BPX preconditioning.

10 Y T T T T
‘CPCG-HB' -8
'CPCG-BPX' —o—
'c_cGl *_‘-
8 I

g 6f

E

£

2 4F
2
0

7
accuracy({bits)

Ficure 2. Comparative iteration times, adaptive mode.



CCG METHODS FOR PDE’S: ALGORITHM AND NUMERICAL RESULTS 39
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# iterations

10 100 1000 16000
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Ficure 3. Comparative iteration number patterns, adaptive mode.

Remark 2. For the sake of completeness, we should mention that part of the
above orthogonality relations require the successive FE spaces to be nested — a
condition, which is not satisfied whenever so-called green edges (cf. [3]) are dis-
solved from one level to the next. We have corrected the above formulas so affected
in terms of the energy error differences thus introduced. However, the effect was so
minor that this modification was ultimately omitted.

2.2. Uniform Mode. We now illustrate the three algorithmic variants of the
CPCG method in the non-adaptive or uniform mode. In this mode, uniform mesh
refinement is performed without making actual use of any discretization error esti-
mator or indicator. The associated considerable amount of overall computing time
is therefore saved. We exemplify this mode only for the peak problem above, which
would certainly require a highly non-uniform mesh {compare Fig. 1).
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FiGURE 4. Comparative iteration times, uniform mode.
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FIGURE 5. Comparative iteration number patterns, uniform mode.
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FicUuRE 6. Uniform versus adaptive mode, peak problem.

Fig. 4 shows the comparative iteration times and Fig. 5 the comparative number
of iterations. The effects in the uniform mode are obviously the same as in the
adaptive mode before. Once more, the CCG variant without preconditioning is
clearly superior to the two preconditioners HB and BPX. Note that the CCG variant
is much simpler to implement and does not need any analytic pre-investigations,
which typically involve a high technical level of sophistication.

The above experiments should not leave the impression that adaptivity does
not pay off. For this reason, Fig. 6 compares the total amount of computing time
(full Galerkin approximation) for the adaptive and the uniform CCG mode as a
function of the achieved discretization error accuracy. As can be seen, storage and
computing time limitations lead to rather stringent accuracy limitations for the
uniform mode. This factor is even more limiting in 3-D!

Conclusion

The present paper derives a simple but efficient strategy to control the dis-
cretization errors of the Galerkin FEM in combination with the iteration errors of
the PCG method in terms of the energy norm. The relative merits of different pre-
conditioners versus the case of no preconditioning have been compared. It appeared
that the cascadic conjugate gradient method without any preconditioning (called
CCQ herein) was not only simplest but also fastest compared to the HB and BPX
preconditioned case. In the 2-D comparison runs, HB was second and BPX was
third, whereas in the 3-D runs (not documented herein) the two preconditioners
interchanged their role — as expected from theory. The asymptotic behavior of the
CCG method turned out to be the same as the one of the CPCG method with
BPX preconditioning. Moreover, the effects were the same both for the adaptive
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and the non—adaptive mode — and therefore independent of any possible energy
error equidistribution.

in

Summarizing, the numerical results seem to indicate that the cascade principle
itself already realizes some kind of preconditioning. A theoretical study of this

feature is in progress.
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