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Multilevel Methods for Elliptic Problems with
Discontinuous Coefficients in Three Dimensions

MAKSYMILIAN DRYJA

ABSTRACT. Multilevel Schwarz methods are developed for a conforming approx-
imation of second order elliptic problems. We focus on problems in three di-
mensions and with possibly large jumps in the coefficients across the interface
separating the subregions. We establish a condition number estimate for the
iterative operator which is independent of the coefficients and grows at most as
the square of the number of levels. We also characterize a class of distributions
of the coefficients, called quasi-monotone, for which the weighted L2-projection
is stable and for which we can use the standard piecewise linear function to
construct a coarse space. In this case, we obtain optimal methods.

1. Introduction

In this paper, we discuss methods known as BPX algorithms (cf. Bramble, Pasciak
and Xu [1] and Xu [9]) or multilevel Schwarz methods with one dimensional sub-
spaces; see Zhang [10], and Dryja and Widlund {5]. It is well known that these
methods are optimal when the coefficients are regular. A challenging problem is
to extend these methods to problems which have very highly discontinuous coeffi-
cients. In [5], the BPX method was modified and applied to a Schur complement
systems. In that case the condition number of the preconditioned system is bounded
by C; (1+1log (H/h))?, where H and h are the parameters of the coarse and fine tri-
angulations, respectively. In this paper, we obtain the same estimate for multilevel
additive methods with several exotic coarse spaces; see Widlund [8]. For multi-
plicative versions such as V-cycle multigrid, we obtain rates of convergence bounded
from above by 1 — C; (1 + log H/h)~2; see further Sarkis [6], and Dryja, Sarkis, and
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Widlund [2]. In this paper, all constants C; are independent of the variables appear-
ing in the inequalities and the parameters related to meshes, spaces and, especially,
the weight p.

This brief paper represents joint work with Marcus Sarkis and Olof Widlund and
all proofs and details can be found in [2].

2. Differential and Finite Element Model Problems

We consider the following selfadjoint second order problem:
Find u € H}(), such that

1) a(u,v) = f(v) Vv e Hi (),

where
a(u,v) = / p(z) Vu - Vo dz and f(v) :/ fvdz for fe L*(N).
Q 0

Let 2 be a bounded Lipschitz region in R® with a diameter of order 1. A tri-
angulation of {2 is introduced by dividing the region into nonoverlapping simplices
{Q;}X,, with diameters of order H, which are called substructures or subdomains.
This partitioning induces a coarse triangulation associated with the parameter H.

We assume that p(x) > 0 is constant in each substructure with possibly large
jumps occurring only across substructure boundaries. Therefore, p(z) = p; = const
in each substructure £2;. The analysis of the methods introduced here can easily be
extended to the case when p(x) varies moderately in each subregion.

We define a sequence of nested triangulations {7% }zzo as follows. We start with
the coarse triangulation 7° = {Q;})_; and let hy = H. A triangulation 7% on level
k is obtained by subdividing each individual element in 7%~ into several elements.
The assumptions on the regularity of the refinements are standard; see Zhang [10].
For each level of triangulation, we define a finite element space V{(Q) as the space
of continuous piecewise linear functions associated with the triangulation 7% and
which vanish on 99, the boundary of . We denote V() = V#(Q). The discrete
problem associated with (1) is given by:

Find u € V(R), such that

() a(u,v) = f(v) Vv e VRQ).

The bilinear form a(u,v) is directly related to a weighted Sobolev space H ; ()
defined by the seminorm

IUI%I;(Q) = a(u, u).

We also define a weighted L? norm by:

3) 30 = [ #(@) lu(o)? ds for w € 12(0)
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3. Multilevel Additive Schwarz Methods

The multilevel methods that we consider are based on the MDS-multilevel diagonal
scaling introduced by Zhang [10], enriched with a coarse space V_; as in Dryja and
‘Widlund [4], and Dryja, Smith, and Widlund [3].

Let N* be the set of nodal points associated with the space V. Let ¢% be a
standard nodal basis function of Vi, and let V} = span{¢%}. We decompose Vh

178 =VX+ZV0 —VX1+Z > VE
k=0jeN*

We note that this decomposition is not a direct sum and that dlIIl(Vk) = 1. Four
different coarse spaces V% and associated bilinear forms 5%, (u, v) : fo x VX - R,
X = F, E,NN, and W are considered; see next section.

We introduce operators P} : V' — VF, by

a(Pfu,v) = a(u,v) Yv e vF,
and an operator 7%, : V* — VX by

b* (T5u,v) = alu,v) Yve VX.

Let
¢
(4 T*=TX+>" Y P
k=0 jeN*
We now replace (2) by
(5) TXu=g, g=T% u—i—ZZPk
k=0 JGNk

The equation (5) is typically solved by a conjugate gradient method. In order to
estimate its rate of convergence, we need to obtain upper and lower bounds for the
spectrum of TX.

THEOREM 1. For u € VP(Q), we have

Cs (1 +log(H/R)2a(u, u) < a(TXu,u) < Cyalu,u).

4. Coarse Spaces and Bilinear Forms

Let F;; represent the open face which is shared by two substructures €); and Q;.
Let W; denote the wire basket of the subdomain £, i.e. the union of the closures of
the edges of 0€2;. We define the wire basket by W = UW,\88. The sets of nodes on
Fij, W, and W are denoted by F;; 5, Wh, and W, .

e A face and wire basket based coarse space. The first coarse space is
denoted by V7%, and is based on the wire basket W, and the average over each
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face Fij 5. This space can conveniently be defined as the range of an interpolation
operator IF : Vi — VI, defined by

Ifu(x)lﬁl = Z ’U,(Zp)gop(:l?) + Z 'afije'fij (x)

CpEW; p - Fi5CO0Q;

Here, pp(x) is the discrete harmonic function into §; which equals 1 at z, and
vanishes elsewhere on 9€; 5. @, is the average value of u on Fijx, and 0, (z) the
discrete harmonic function in Q; which equals 1 on F;; 5, and is zero on 8; ,\Fijin.

We define the bilinear form by

b (u,u) = E,Oz'{ Z h (u(zy) — ;)
i TpEWi p

+H(l+logH/R) > (g, —u:)?},
Fi3COQ;

where %; is the average of the discrete values of u over 0%, 5.

e A face, edge, and vertex based coarse space. We can decrease the dimen-
sion of the coarse space given above and define another coarse space denoted by V.
Rather than using the values of all the nodes on the edges as degrees of freedom,
only one degree of freedom per edge, an average value is used; see [3].

o A Neumann-Neumann coarse space. We can also consider the coarse space
VNN, see [4]. This space is of minimal dimension with only one degree of freedom
per substructure.

e A wire basket based coarse space. Finally, we consider a coarse space VY,
due to Barry Smith see [7], or {3]. It is based only on the wire basket Wh.

REMARK 1. We can decrease the complexity of our algorithm by considering ap-
prozimate discrete harmonic extension given by simple explicit formulas in [2].

5. Quasi-Monotone Coefficients and an Optimal Algorithm

In this section, we indicate that if the coefficients p; satisfy certain assumptions,
the Lf;projection is stable and we can use the space of piecewise linear functions
VH(Q) as a coarse space to obtain an optimal multilevel preconditioner.

Let {V,n }1_, be the set of substructure vertices. We also include the vertices that
are on 9. Let Q,,, i =1,---,s(m), denote the substructures that have the vertex
Vm in common, and let the p,,, denote their coeflicients. Let €], be the interior of
the closure of the union of these substructures Q,,, i.e. the interior of u?;"f’ Q.. By
using the fact that all substructures are simplices, we see that each £),,, has a whole
face in common with §,. Thus, the vertex V,, is the only internal cross point in

DerFNITION 1. For each §Y,,, we order its substructures such that

= max ;-
P 41,0 ,s(m) Prms
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We say that a distribution of pp, is quasi-monotone on Y., if for eachi =1,--- | s(m),
there exists a sequence i;, j =1,---, R, with

(6) pmi:pmiRS"'Spmij+l Spm,, S"'Spmil = Pmy>

where the substructures €,,, and le . have a face in common. If the vertex

Vim € 09, then we addztzonally assume thtzt O, NONY contains a face for which Vy,
S a vertex.
A distribution p; on § is quasi-monotone if it is quasi-monotone on each Q..

THEOREM 2. For a quasi-monotone distribution of the coefficients on ), we have
(7) 1T — Q) ullza(e) = H [ulmyoy Yu € V().
Here, Q[ is the weighted L2-projection from V() to V().

THEOREM 3. Let TH = TX be defined by (4) with VX = VH(Q) and b_1(-,-) =
a(:,-). For a quasi-monotone distribution of the coefficients on ), we have

Cs a(u,u) < a(THu,u) < Cgalu,u) Yu € V).

REMARK 2. The analysis can be extended to problems with Neumann or mized
boundary conditions, and quasi-monotone coefficients. In this case, we also obtain
an optimal method.
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