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Tailoring Domain Decomposition Methods
for Efficient Parallel Coarse Grid Solution
and for Systems with Many Right Hand Sides

CHARBEL FARHAT
PO-SHU CHEN

ABSTRACT. We present and illustrate a methodology for extending the range of
applications of scalable domain decomposition methods to problems with multiple
and/or repeated right-hand sides, and for solving efficiently their coarse grid problems

on massively parallel processors.

1. Introduction

The condition number of the interface problem associated with a numer-
ically scalable domain decomposition (DD) method does not grow (or “grows
weakly”) asymptotically with the number of subdomains. One of the many
reasons why numerical scalability is desirable is that increasing the number of
subdomains is the simplest means for increasing the degree of parallelism of a
DD based preconditioned conjugate gradient (PCG) algorithm. In other words,
numerical scalability is critical for massively parallel processing. This optimal
property is usually achieved via the introduction in a DD method of a coarse
problem (or coarse grid, by analogy with multigrid methods) that relates to the
original problem and that must be solved at each global CG iteration. Direct
methods are often chosen for solving the coarse problem despite the fact that
they are difficult to implement on a massively parallel processor and do not par-
allelize well. Therefore in many cases, a numerically scalable DD method loses
its appeal because of its lack of parallel scalability. One way to restore parallel
scalability is to solve iteratively the coarse problem, for example using a CG
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scheme. However, this approach raises the question of how to solve iteratively
and efficiently a system with a constant matrix and repeated right-hand sides.
Finding an answer to this question also extends the range of applications of DD
methods to design problems, time dependent problems, eigenvalue problems, and
several other applications where multiple and repeated right-hand sides always
arise and challenge iterative solvers. The iterative solution of systems with
multiple right-hand sides has been previously addressed in [1], and recently in
[2,3]. Here, we present a CG based methodology for solving such problems that
uses the same data structures as those employed in DD methods without a coarse
grid. The numerical idea exposed in this paper is related to that analyzed in [1].
However, the specific algorithm proposed herein is different, simpler, and easier
to parallelize than that described in [1], and faster but more memory consuming
[4] than both schemes presented in [2].

2. Problem formulation and nomenclature

For the sake of clarity, we first discuss the problem and the proposed solu-
tion methodology in the absence of any DD method or coarse grid. In Section 4,
we highlight the positive implications of domain decomposition on the advocated
approach. We are interested in solving iteratively the following problems:

(1) Az; = b; t = 1, ..., Npps

where A, {b;}; iv’"hs , and {x;}; — f”"hs denote respectively a symmetric pos-
itive definite matrix, a set of N, right-hand sides, and the corresponding set
of Nyp solution vectors. These problems can be transformed into the following
minimization problems:

1
2) ggA @,(z) = 3 zfAz — bfx i =1, .., Nops
x

where N, is the dimension of matrix A, R is the set of real numbers, and T is
the transpose superscript. If each minimization problem in (2} is solved with a
PCG algorithm, the following Krylov subspaces are generated:

(3) 87, = {sgl), S§2)7 veey sgk), aeny Sgri)} i = 1, seey ths

where sgk) and 7; < N4 denote respectively the search direction vector at it-
eration k, and the number of iterations for convergence of the PCG algorithm
applied to the minimization of ®;(x). Additionally, we introduce the following

agglomerated subspaces:
4) S; = U S; i = 1, ..., Npps
Let S; denote the rectangular matrix associated with S;. From the orthog-

onality properties of the conjugate gradient method, it follows that:

() STASi =Di i=1, . Nopo Dy = [diy diy - i ]
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However, note that in general g’;rAgi is not a diagonal matrix. Finally, we

define S; as the matrix whose column vectors also span the subspace S;, but are
orthogonalized with respect to matrix A. Hence, we have:

®© ' e
range (Sz) = S,L i = 1, ceey ths; Sz ASi = Di i = 1, eaey ths
—— Jzz
57. = [—wzl ij C—ii;i ] s Ty = Ty
j=1

3. Projection and orthogonalization

Suppose that the first problem Az; = b; has been solved in r; PCG itera-
tions, and that the N4 X r; matrix S, associated with the Krylov subspace S is
readily available. Solving the second problem Azg = bs is equivalent to solving:

(7) min Pa(z) = la:TA:z: - ble
zeRNA 2

If R¥4 is decomposed as follows:

(8) RNa = & ®Sy, dim (87) = Ng—r1, & and 87 are A—orthogonal
then the solution of problem (7) can be written as:

(9) 22 = 2] +22, 29 €8, 25 €87, and a:gTAzz = 25 Az) =0

From Egs. (7-9), it follows that mg is the solution of the minimization problem:

1
(10) min ®2(z) = = z7 Az — bz
€St 2

and z is the solution of the minimization problem:

1
(11) Znelg} Ba(z) = 3 2T Az — blz

First, we consider the solution of problem (10). Since zJ € 81, there exists
a yJ € R™ such that:

(12) z) = Siy3

Substituting Eq. (12) into Eq. (10) leads to the following minimization problem:

~ 1
(13) [Bin @2(y) = yT8T AS1y — b5 S1y
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whose solution ¢ is given by:
(14) SfASl yg = 52, 52 = S?bg

From Eq. (5), it follows that the system of equations (14) is diagonal. Hence,
the components [yJ]; of yJ can be simply computed as follows:

[b2];
dy

(15) Wl = i=1 .

J

Next, we turn to the solution of problem (11) via a PCQG algorithm. Since
the decomposition (9) requires z2 to be A-orthogonal to a:g, at each iteration

k, the search directions sgk) must be explicitly A-orthogonalized to S1. This

entails the computation of modified search directions §gc) as follows:

9=r1 (@T 4 (k) BT 4 (@)
s As s As

(16) §§k) = sgk) -+ E aqsgq), ag = 1 i = 2 1

q=1

qu)TAsgq) sgq)TAsgq)

Except for the above modifications, the original PCG algorithm is unchanged.
However, convergence is expected to be much faster for the second and subse-
quent problems than for the first one, because 87 and the subsequent supple-

mentary spaces have smaller dimensions than RY4, and a significant number of
the solution components are included in the startup solutions of the form of zJ.

The generalization to the case of N,,, right-hand sides of the two-step
solution procedure described above is straightforward [3].

4. Application to coarse grids and DD interface problems

Despite its elegance and simplicity, the methodology described in Sec-
tion 3 can be impractical when applied to the global solution of the problems
Az; = b;, 1 =1, Npps. Indeed, during the PCG solution of the first few problems
— that is, before superconvergence can be reached — the cost of the orthogonal-
izations implied by Eq. (16) can offset the benefits of convergence acceleration

via the optimal startup solution and the modified search directions §§k) . More-

P

over, storing every search direction sgk) and the corresponding matrix-vector
2(k)

product A3, can significantly increase the memory requirements of the basic
PCG algorithm. However, the proposed methodology is computationally feasi-
ble in a domain decomposition context because it is applied only to the coarse
grid and/or the interface problem.

5. Performance evaluation for coarse problems

First, we consider the static solution of a two-dimensional plane stress elas-
ticity problem using the FETI domain decomposition method [5] on an iPSC-
860 parallel processor. The FETI method is numerically scalable. For elasticity
problems, the two-norm condition number of its preconditioned interface prob-
lem grows asymptotically as xo = O (1 + log? % ), where H and h denote
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respectively the subdomain and mesh sizes [6]. At each k-th FETI global PCG
iteration, the following coarse problem must be solved:

(17) (G1'Gr) z1, = by,

where G =[BiR1 .. BsRs .. By, Rn,]|, Bs is a boolean matrix that ex-
tracts from a subdomain quantity its interface component, R, spans the null
space of the stiffness matrix associated with a singular subdomain s, N denotes
the total number of subdomains, and by is related to the interface residual at
the k-th global PCG iteration. Clearly, the systems in (17) have a constant
matrix and repeated right-hand sides. The parallel solution of these problems
via the CG scheme described in Section 3 is implemented using the existing sub-
domain based parallel data structures; it requires communication only between
neighboring subdomains. Using 4-node plane stress elements, three finite ele-
ment models corresponding to 4, 16, and 64 subdomains are constructed: each
model has a different size but the ratio H/h is kept constant across all three
finite element models. The performance results measured for all three problems
are summarized in Table 1 where NEQ, Np, Ny, and Tyo: denote respectively
the number of equations generated by the finite element model, the number of
processors, the number of FETI global PCG iterations, and the total CPU time
for solving the plane stress problem.

TABLE 1
Two-dimensional elasticity problem:
performance results on an iPSC-860

h H NEQ Np Ny Tiot

% % 3,200 4 10 3.45 secs.
= 1 12800 16 16  5.17 secs.
Téa 3 51,200 64 17 5.92 secs.

Clearly, the results summarized in Table 1 demonstrate the combined numerical
and parallel scalability of the FETI method and its parallel implementation.

6. Performance evaluation for time dependent problems

Next, we apply the methodology described in this paper to the solution
of repeated systems arising from the linear transient analysis using an implicit
time-integration scheme of a three-dimensional line-pinched membrane with a
circular hole. The structure is discretized in 5,680 4-node elements and 11,640
degrees of freedom. The finite element mesh is partitioned into 32 subdomains.
The size of the interface problem is 1,892 — that is, 16.25% of the size of the
global problem. The transient analysis is carried out on a 32 processor iPSC-860
system. After all of the usual finite element storage requirements are allocated,
there is enough memory left to store a total number of 891 search directions.
This number corresponds to 47% of the size of the interface problem. Using a
transient version of the FETI method without a coarse grid [7], the system of
equations arising at the first time step is solved in 322 iterations. After 3 time
steps, 435 search directions are accumulated and only 20 iterations are needed
for solving the fourth linear system of equations. After 16 time steps, the total
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number of accumulated search directions is only 536 — that is, only 28% of the
size of the interface problem, and superconvergence is triggered: all subsequent
time steps are solved in 1 or 2 iterations and in less than 1.0 second CPU (Fig.
1). When a parallel direct solver is applied to the above problem, at each time
step, the pair of forward/backward substitutions consumes 15.0 seconds on the
same 32 processor iPSC-860. Therefore, the proposed solution methodology is
clearly an excellent alternative to repeated forward/backward substitutions on
distributed memory parallel processors.
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