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Abstract

We consider a Schur complement BPS-like domain decomposition
algorithm for the 2D drift-diffusion equations arising from semiconduc-
tor modeling. In particular, we focus on two problems: anisotropic
phenomena and large changes in the PDE coefficients as one moves
spatially within the domain. The preconditioners that we discuss are
essentially BPS preconditioners [2] where the interface coupling is ap-
proximated using band matrices generated by the probing technique [3].
To cope with anisotropic phenomena, we introduce additional band ma-
trices (in the context of the probe preconditioner) to approximate the
coupling between neighboring interfaces. To address coefficient varia-
tions over the domain, we make use of the close connection between
domain decomposition and multigrid and introduce specialized inter-
polation, projection, and averaging techniques to develop an accurate
coarse grid approximation. We demonstrate the benefits of the new
approach using computational experiments.

1 Introduction

We consider algorithms for the solution of the drift-diffusion equations in
two dimensions. The solution of these equations is of great importance
for semiconductor device modeling. In this paper, we focus on efficiently
solving the linear systems that arise from Gummel’s method [8] via Schur
complement domain decomposition algorithms. The principal difficulties
presented by our formulation of the drift-diffusion equations are anisotropic
behavior introduced by the discretization and large variations in the PDE
coefficients. To solve the resulting linear systems, the conjugate gradient
method is used in conjunction with a BPS-like [2] preconditioner:

M~ = Mzt + IBAFTE,

where M5 1 is the interface approximation, I ;}AI}lI H is the coarse grid prob-
lem, Az corresponds to the discretization matrix of the original problem on
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a coarse grid whose elements are defined by the non-overlapping subdo-
mains, and I7 = [I%]T denotes the transfer operator between the original
fine grid and the coarse grid. In Section 2, we describe briefly the drift-
- diffusion equations and show how anisotropic behavior and large variations
in the PDE coefficients arise from our formulation. Next in Section 3, we
present new methods for Mg ! suitable for anisotropic problems and specif-
ically designed for situations when the coupling between neighboring inter-
faces is stronger than the coupling within an interface [6]. Then, in Section 4
we propose grid transfer operators suitable for highly variable coefficient
problems. These operator-dependent transfers correspond to extensions of
operator-dependent prolongation and restriction operators used in standard
multigrid methods [7]. Lastly, in Section 5 computational results are given
to illustrate the different approaches.

2 The Drift-Diffusion Equations

A drift-diffusion model is used to approximate the behavior of a single
semiconductor device [9]. This model consists of a potential equation

eV + g[niee /¥y — 1y ed¥/%Ty + Np — Nu] =0,

and two continuity equations
kT
q
where ¢ is the scalar permittivity of the semiconductor, n;. is the effective
intrinsic carrier concentration, g is the elementary charge, k is the Boltzmann
constant, 1" is the temperature in Kelvin, Np is the density of donor
impurities, N4 is the density of acceptors, and u, and p, are the electron
and hole mobilities respectively. The dependent variables are the electric

potential, ¢, and the two Slotboom variables u and v. The density of free
electrons, n, and free holes, p, can be recovered using

kT
V- unnieew/ kTVu] +R=0and V- [—q—,upniee“q"’/ kTVv] —R=0,

y] —_ £
n = niee‘”’/ kTy, P = Ne€ /KTy,

Notice that the drift-diffusion equations are nonlinear and that the indi-
vidual equations are symmetric self-adjoint operators with highly variable
coeflicients (due to the exponential operators).

A discrete approximation to the drift-diffusion equations is obtained
by approximating each of the derivative terms with central differences on
a highly stretched grid. Unfortunately, a significant degree of anisotropic
behavior is introduced as a consequence of this highly stretched grid. The
resulting system of three discrete nonlinear equations is then solved using a
nonlinear Gauss-Seidel method known as the Gummel iterative technique {8].
This nonlinear technique requires the solution of three symmetric linear
systems (corresponding to the three discrete PDEs) within each Gummel
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iteration. To solve these linear systems, we use a conjugate gradient
algorithm in conjunction with the BPS-like preconditioner

Mt =Mzt + IRAZTE

The remainder of this paper discusses the development of the two compo-
nents of this preconditioner.

3 Interface Component

To construct the interface component Mz, we follow [3]. That is, the
diagonal blocks of the Schur complement that correspond to the coupling
between fine grid points on the same subdomain edge are approximated
by band matrices. This choice is motivated by the following observations
for a two subdomain decomposition. First, the Schur complement matrix
is “close” to a band matrix. That is, the entries decay rapidly from the
diagonal. Second, all entries of a band matrix having upper and lower
bandwidth d can be computed by the action of this matrix on 2d-+1 carefully
chosen probe vectors p* (e.g. , p* = (.,0,0,1,0,0,1,0,0,1,..)T for d = 1).
In the rest of the paper, d denotes the upper and lower bandwidth of the
approximation matrices. To generalize the probing technique to multiple
domains, we must generate one band matrix for each edge. One possibility
is to build all the band approximations on the vertical edges at the same
time and then on the horizontal edges. That is, a composite probe vector is
defined first over all the vertical edges by combining individual probe vectors
for each edge. Then the same process is performed for the horizontal edges.
This variant gives rise to the preconditioner referred to as Mgh(d). The
second variant further subdivides both horizontal and vertical edges into ‘red’
and ‘black’ sets to minimize the approximation errors arising from coupling
between vertical (or horizontal) interfaces. The resulting preconditioner is

denoted by JM_gbw .
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TABLE 1
# of iterations for uy, + euyy = f on a 128 x 128 grid

L e=1.0 ]

# domains
M1 2x2[4x4[8x8[16x16[32x 32
MmO 15 | 24 | 32 48 81
Mp®@ 15 | 24 | 31 48 81
MO T o | g2 50 69
[ g=10"3 [
# domains
M=t [[2x2]4x4[8x8[16x16 [ 32x 32
My 9 | 56 | 200 | 485 -
MW 9 | 26 | 54 71 120
Mp® 8 | 26 | 54 71 120
MPEOT 14 | 16 17 17

For anisotropic problems, the off-diagonal blocks of the Schur comple-
ment can have large entries. In such situation, the previous block Jacobi
type preconditioners can be inefficient. In order to capture the off-diagonal
block coupling, we consider a new preconditioner which approximates the
Schur complement coupling along each line of the original grid by a separate
band matrix. The band matrix for each line differs depending on whether
a line is aligned with an interface or not. On a uniform grid with n, x ny
grid points partitioned among N, x N, equi-sized rectangles, the N, — 1
horizontal grid lines that are aligned with the interfaces have n, points in
the Schur complement operator and those lines between the interfaces have
Nz —1 points. The probe idea can be applied to compute an approximation
of the Schur complement restricted to the lines. For detailed information on
these full probing approximations, we refer to [6] and simply state that the
new preconditioner looks like an additive version of alternating line relax-
ation method or an additive ADI method applied on the Schur complement,
operator. In this paper the resulting preconditioner is referred to as M éuu(d} .

In Table 1 we display the number of iterations required using various
interface preconditioners without a coarse grid preconditioner for a Poisson
problem defined on the unit square with Dirichlet boundary conditions.
Convergence is attained when the Euclidean norm of the residual is reduced
by a factor 10°. These results show that while all the preconditioners are
equivalent for the nonanisotropic case, there is a great deal of variation
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for anisotropic problems. In the anisotropic case, the red-black probing
improves the convergence noticeably and with full probing we obtain very
fast convergence for the anisotropic case. When the problem is very
anisotropic and constant coefficient, a coarse grid preconditioner is not
needed as the problem is essentially one dimensional and thus preconditioned
accurately by the band solves.

4 Coarse Grid Component

The coarse grid component of the preconditioner is defined by I I@Aﬁll ,fl
where the restriction operator I}If is the transpose of the prolongation
operator I%. The definition of the grid transfer operators is crucial to develop
an accurate coarse grid approximation. When the coefficients are highly
variable, the close relationship between the BPS-type preconditioner and
multigrid can be exploited. In the context of multigrid for regular meshes,
where the fine grid contains one point in between all adjacent coarse grid
points, the definition of those operators is relatively well understood [1}, and
[4]. In our work we have generalized these results to the case when the
number of fine grid points between two adjacent coarse grid points is greater
than one and not necessarily constant. These operator dependent transfers
correspond to an extension of standard operator dependent prolongation
and restriction operators used in standard multigrid methods. It can be
shown that for certain coarse grids the 1D version of this prolongation is
equivalent to recursive use of standard operator dependent prolongation on
a hierarchy of grids in a multigrid method where a harmonic average is used
to average the PDE coefficients [7]. For a detailed description of this grid
transfer operator in the context of multigrid, we refer to [7] where averaging
techniques and Galerkin formulations are also discussed for obtaining the
operator Ag.

5 Experimental results

Results are given corresponding to a simple MOSFET device simulation.
In Fig. 1, we illustrate the characteristics of this device. The contacts
correspond to Dirichlet boundary conditions while the other boundaries
are Neumman conditions. For the potential equation the solution is solved
over the whole domain. For the u and v equations, we solve on the whole
domain excluding the oxide where Neumman conditions are used on the
oxide interface. A scaled down version of the grid used in this paper is
given in Fig. 2. Table 2 displays the average number of conjugate gradient
iterations for each linear solve corresponding to the two continuity equations
for a MOSFET simulation discretized on a 129 x 129 grid. In the table, we
show only the results using the full probing technique as the other probing
techniques required many more iterations. From the table, we can see the
importance of the coarse grid component in the preconditioner. That is,
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) TABLE 2
average # of iterations for the n and p equations.

# domains
Preconditioner 4x4 [ 8x8 | 16 x 16 [ 32 x 32
without coarse grid 33 58 103 156
standard grid transfers 41 58 65 60
op. dep. transfers 38 45 40 31

without the coarse grid the number of iterations grows significantly as the
mumber of domains is increased. Further, we can see the effect of using
carefully chosen operator-dependent grid transfers, compared with using
simple bilinear interpolation. In particular, for the problem using 32 x 32
domains there is a factor of two difference in the number of iterations between
the two while the work per iteration is approximately the same. For more
details on the probing and anisotropic phenomena we refer the reader to [6].
For more details on the grid transfers we refer the reader to [7]. Finally, more
extensive numerical experiments for several semiconductor devices using a
few different domain decomposition algorithms will be presented in [5].
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