Contemporary Mathematics
Volume 180, 1994

A One Shot Domain
Decomposition/Fictitious Domain method
for the Navier—Stokes Equations

ROLAND GLOWINSKI, TSORNG-WHAY PAN AND JACQUES PERIAUX

ABSTRACT. In this paper which is motivated by computation on parallel
MIMD machines, we address the numerical solution of some class of el-
liptic problems by a combination of domain decomposition and fictitious
domain methods. We take advantage of the fact that the Steklov—Poincare
operators associated with the subdomain interfaces and with the fictitious
domain treatment of internal boundaries have very similar properties. We
use these properties to derive fast solution methods of conjugate gradient
type with good parallelization properties which force simultaneously the
matching at the subdomain interfaces and the actual boundary conditions.
Preliminary results obtained on a KSR machine are presented. A similar
methodology has been applied to simulate viscous flows around obstacles
modelled by Navier—Stokes equations.

1. Introduction

Fictitious domain methods for Partial Differential Equations have shown re-
cently a most interesting potential for solving complicated problems from Science
and Engineering (see, e.g., [1, 2] for some impressive illustrations of the above
statement). The main reason of popularity of fictitious domain methods (some-
time called domain imbedding methods; cf. [3]) is that they allow the use of fairly
structured meshes on a simple shape auxiliary domain containing the actual one,
allowing therefore the use of fast solvers. In [4, 5], we have used Lagrange mul-
tiplier and finite element methods combined with fictitious domain techniques
to compute the numerical solutions of elliptic problems with Dirichlet bound-
ary conditions and simulate some nonlinear time dependent problems, namely
the flow of a viscous—plastic medium in a cylindrical pipe and time dependent
external incompressible viscous flow modelled by the Navier-Stokes equations.
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In this paper motivated by computation on parallel MIMD machines, we ad-
dress the numerical solution of a class of elliptic problems by a combination of
domain decomposition and fictitious domain methods. From the fact that the
Steklov—Poincare operators associated with the subdomain interfaces and with
the fictitious domain treatment of internal boundaries have very similar prop-
erties; we derive fast solution methods of conjugate gradient type with good
parallelization properties which enforce simultaneously the matching at the sub-
domain interfaces and the actual boundary conditions. A similar methodology
has been applied to simulate viscous flows around obstacles modelled by Navier—
Stokes equations. In Section 2, we describe the formulation of a family of Dirich-
let problems and discuss an equivalent formulation which is at the basis of the
domain decomposition/fictitious domain methods. Preliminary results obtained
on a KSR1 machine are presented. In Section 3 we apply a similar methodol-
ogy to simulate external incompressible viscous flow modelled by Navier—Stokes
equations.

2. One Shot DD/FD Method for the Dirichlet problem
2.1. Formulation of the Dirichlet problem
We consider the following elliptic problem:

(2.1) ou—vAu= finQ\ o,
(2.2) u=gopony, =g onl,

where € is a “box” domain in R%(d > 1), w is a bounded domain in R%(d > 1)
such that w CC Q (e.g., see Fig. 2.1 in which Q = QU and w =wy Uws), T
(vesp., 7) is the boundary 8¢} (resp., Ow), a > 0, and v > 0; finally, f, go, and
g1 are given functions defined over Q) \ @, v and T, respectively. If f, go, and g1

are smooth enough, problem (2.1)—(2.2) has a unique solution. The equivalent
variational formulation of problem (2.1)-(2.2) is

(2.3) /(auv-l—uVu-Vv)dm:/fvdm, Vv € Vos u eV,
Qo QQ

where 3y = Q\ @, V; = {vjv € HY(Q),v = gyonv,v = gionT} and Vp =
{vlv € H'(R),v =00n~yuT}.

2.2. Domain decomposition/fictitious domain approach

For simplicity we consider the ease where w is the union of two disjoint
bounded domains, w1 and wy, and Q is the union of two subdomains ; and
22 (see Fig. 2.1); we denote by 7o the interface between ©; and Qa, by 71 (resp.,
72) the boundary of w; (resp., wz), and let Iy = I'N 8y and T, = ' N .
Combining the fictitious domain method discussed in [4] to a domain decompo-

sition method (see, e.g., [6]) and applying to the solution of problem (2.1)-(2.2),
(2.3), we obtain the following equivalent problem:
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([ Findu; € Vy, A € L3 (3), Ag € L*(7) such that
/(CYU,;’U,; -+ vVui . V'Uz) dx = /f?)z dx
I O
+/)\1’U1, dy + (—1)7:/Ad’ll,,; dvy, Yu; € ‘/Oi, fori=1,2,
\ Yi Yo
(2.5) /Mz‘(ui~go)d’)’=0,vﬂi € L*(y), fori=1,2,

Yi

26) [ nalus — i) dy =0, s € Z2(30),
Yo
where f is a L?(Q) extension of f, Vi = {vlv € HY(%),v = g onT;} and
o = {vlv € H'(Q),v = 00nT;} for i = 1,2. We have equivalence in the sense
that if relations (2.4)—(2.6) hold then u; = ulg,, for i = 1,2, and conversely.

(2.4)

P

Q4
Ty
N1
Yo
v, (0
r,
Q,

Figure 2.1.
In (2.4)-(2.6), the function A; which is a Lagrange multiplier associated with

d
the boundary condition u = go on +; is essentially the jump of v 22 at ~; for
1 = 1,2 and the function Ay which can be viewed as a Lagrange multiplier

associated with the interface boundary condition u; = w2 on < is nothing but
Ou

0
the function u—u— v—

s | do = T o },m, where n; is the normal unit vector at g,

outward to €2;.
Due to the combination of the two methods, there are two Lagrange multipliers

associated with the boundary conditions and with the matching of solution at the
subdomain interfaces, respectively. We can solve the saddle—point system (2.4)-
(2.6) by a conjugate gradient algorithm driven by the multiplier associated with
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the boundary conditions, the one driven by the multiplier associated with the
matching at the subdomain interfaces, or by the one called the one shot method
driven by the two multipliers at the same tire |7]. These methods have different
parallelization properties and can be parallelized on MIMD machines. The one
driven by the multiplier associated with the boundary conditions was discussed
in [7] and its speed on a KSR1 is much slower than that of the one shot method
for the two subdomains decomposition shown in Fig. 2.1. In Section 2.3 we are
would like to test the one shot method with more subdomains.

2.3. Performance on a KSR1 machine

Q, Q. Qs Q5

aw

Yo
@D
Yo Yo Yo
!
(o Q3 Qs | Qq
Figure 2.2.

We consider problem (2.1)—(2.2) with & = v = 1 as test problem and let
u(z,y) = 22+ be the solution of the test problem. Then f(z,y) = 22 +y? —4.

- 1-0)2 (y - Ci)2 -
el 2
+ (i/16)? <1}, fori=1,2,

Let w = wq U wsp where w; = {(z,y)| (m(1/8)2
c; =1.1875, ¢,=0.8125; take 2 = (0,2) x (0,2).

In the numerical experiments, we consider the case where Q is the union of
eight subdomains €, ..., to Qg (see Fig. 2.2). The finite dimensional spaces

Vi, and Vi, of V} and V{, respectively for i = 1,...,8 are as follows:

V;:h = {'U};I’Uh € V; n C'D(S_Zi),vh = gp onI‘i,vth e VT € 77.,,2},

Wh = {Q)h!’vh S V(;L ﬂCO(Qi),’Uh = OO‘YLFi,Uth e PVT € 7;:},
where gp, is an approximation of g, ’_i;f is a triangulations of Q; for i = 1,...,8
and P, is the space of the polynomials in z,y of degree < 1. For i = 0,1, 2, the
finite dimensional space A%, of L?(v;) is defined as follows:

AL = {pnlpn € L°(y:), pn is constant on the
segment joining 2 consecutive mesh points onv; }.
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The choice of mesh points on 7, and 7, are shown on Fig. 2.3. For stability
reason —the so called LBB inf-sup condition— the length of each segment on +;
and 72 has to be chosen greater than the meshsize A. The obvious choice for the
mesh points on vy are the midpoints of the edges located on v (see Fig. 2.3).
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FIGURE 2.3. MESH POINTS MARKED BY “*” ON 4; AND 2 AND
PART OF MESH POINTS MARKED BY “*” ON «y WITH h = 1/64.

In the one shot method, the elliptic problems have been solved on each subdo-
main by a Fast Elliptic Solver based on cyclic reduction [3, 8-10]. Concerning
implementation of the one shot method on the KSR1 machine, eight discrete
elliptic problems can be solved simultaneously. For meshsize h = 1/32, 1/64,
1/128, and 1/256, the number of iterations of the one shot method is 78, 91,
116, and 151 respectively and the number of iterations for the preconditioned
one shot method is 68, 75, 88, and 92 respectively. Thus the preconditioner for
two dimensional problems works very well. The CPU time per iteration of the
one shot method with or without preconditioner is about the same. In Tables
2.1 and 2.2 we have shown the elapsed time and speedup per iteration of the
discrete analogues of the preconditioned one shot method for different meshsizes
where N, is the number of processors used in computation. The speedup per
iteration in Table 2.2 is better as the size of problem is larger.
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Table 2.1. CPU per iteration on a KSR1
Ny h==1/32 h=1/64 h=1/128 h=1/256
1 0.291 sec. 1.130 sec. 5.251 sec. 22.608 sec.
2 0.189 sec. 0.649 sec. 2.828 sec. 11.756 sec.
4 0.125 sec. 0.394 sec. 1.543 sec. 6.177 sec.
8 0.099 sec. 0.231 sec. 0.883 sec. 3.334 sec.
Table 2.2. Speedup per iteration on a KSR1

Np h=1/32 h=1/64 h=1/128 h=1/256
1 1.00 1.00 1.00 1.00

2 1.54 1.74 1.86 1.92

4 2.33 . 2.87 3.40 2.66

8 2.94 4.89 5.95 6.78

3. External incompressible viscous flow
3.1. Navier—Stokes equations
Ty
Y
Ty o> T
Q
Ty
Figure 3.1.

In [5], we have used Lagrange multiplier/fictitious domain methods with finite
element methods to simulate external incompressible viscous flow modelled by
the Navier—Stokes equations. Here we would like to consider the same flow prob-
lems with a one shot method. The Navier-Stokes equations are the following:

(3.1)

(3.2)
(3.3)

(3.4)

8u_

— —vAu+(u-Viu+Vp=FfinQ\a,

ot

V-u=0inQ\a,

u(x, 0) = up(x),

u=goonly, v

on

x € N\ @, (withV -ug = 0),

ou
— —np=gionl,u=geonn.

In (3.1)~(3.4), Q and w are bounded domains in R%(d > 2) (see Fig. 3.1), T (resp.,
%) is the boundary of 2 (resp., w) with T =ToUT, [o NI =0 and J dr'>0,

I'y

n is the outer normal unit vector at 'y, u = {u;}!=¢ is the flow velocity, p is the
presure, f is a density of external forces, v(> 0) is a viscosity parameter, and
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j=d
ow; -,
(v -Viw = { E ngj =% For the fictitious domain formulation, we imbed
— J

7
Q\ @ in Q and define

(3.5) Vg, ={vlve (Hl(Q))d,v =goonlp},
(3.6) Vo = {vlve (H(2)% v =00nT,},
(3.7) A= (L2 ()%

Let Uy be an extension of ug with V- Uy = 0 in Q and f an extension of f.
Then we have equivalence between (3.1)~(3.4) and the following problem

Fort >0, find U(t) € Vg, P(t) € L2(2), A(t) € A such that

( ou
—6t—-vdx+1//VU-Vvdx+/(U-V)U-vdx
) Q

(3.8) ——/PV-VdX:/f'-vdx-i—/gl-vdI‘
Q Q

'y

+//\~vd'y, Vv € Vg, a.e.t > 0,
7

(3.9 V-U@) =0in, U(x,0) = Uy(x), x € Q,
(3.10) U = ga(t) ony,
in the sense that U'Q\w = u, Plo\g = p. The multiplier A is the jump of
ou
u—a;l— —nP at y and the effect of the actual geometry is concentrated on [ A-vdy
v
in the right-hand-side of (3.8), and on (3.10).

To solve (3.8)—(3.10), we shall consider a time discretization by an operator
splitting method, like the ones in, e.g., [11-14]. With these methods we can de-
couple the nonlinearity and the incompressibility in the Navier—Stokes/fictitious
domain problem (3.8)—(3.10). Applying the 8—scheme (cf. [14]) to (3.8)-(3.10),
we obtain quasi-Stokes/fictitious domain subproblems and nonlinear advection—
diffusion subproblems (e.g., see [5]). In Section 3.2, a one shot method for the
quasi~Stokes/FD subproblems shall be discussed. Due to the fictitious domain
method and the operator splitting method, advection—diffusion subproblems may
be solved in a least-squares formulation by a conjugate gradient alogrithm [14]
in a simple shape auxiliary domain  without concern for the constraint u=g
at 7. Thus, advection—diffusion subproblems can be solved with domain decom-
position methods.

3.2. The one shot method for the quasi-Stokes/FD subproblems
The quasi-Stokes/fictitious domain subproblem is the following:
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FindU € Vg,, P € L2(Q), X € A such that

/(aU-v+vVU-Vv)dx— /PV-vdx
(3.11) 2

—/A-vd*y:/f'vdx+/g1-vdl"‘, Vv € Vy,
¥ Q Iy
(3.12) V.- U=0inf,

(3.13) U=gzonvy,
The one shot methodology has been used for solving problem (3.11)—(3.13) in
which the two Lagrange multipliers arve the pressure P for (3.12) and X for the

actual boundary condition (3.13). Here we consider a bilinear form b(, ) which
is symmetric and elliptic over A. We may choose b(A, p) = [ A-pdy, VA, p € A
¥

The one shot algorithm is the following;:

(3.14) {PY A%} e L?(Q) x A given; solve the following Dirichlet problem:

/(aUO-v—i-I/VUO-Vv)dx:/f-vdx+
) )

/Ao-vd7+/POV-vdx+/g1-vdl", Vv € Vy; UOEVEO,
ol Q Iy

(3.15)

set ) =V - U0, r§ = (U — g5)|,, and define g° = {¢%,9} as follows:
(3.16) g = ag® +vrd,

with ¢° the solution of

—Ag? =r0inQ,
(3.17) 50

5’-;— =00nTy; ¢° = OonTy,
(3.18) b(g3, u) = /rS ‘pdyVp e A; gj € A

2
We take wO = {w?, wi} = {¢?,29}.

Then for n > 0, assuming that P", A", U™, 77, 13, w", g" are known,
1
compute PPl Antl gndl wntl pntl it ontl g follows:

solve the intermediate Dirichlet problem:
f(af)m -v+vVU™ . Vv)dx
Q

=/w'§-vdfy+/w§‘v'vdx, Yv € Vg; U™ € Vg,
¥ Q

(3.19)
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set 7P =V - U, 18 = U"|,, and define g" = {37,853} as follows:
(3.20) g = ag" +vit,

with @™ the solution of

—Ag" =7 inQ,
(3.21) oan

aq; —OO'I’LI‘(), ¢n 00nI‘1,
(3:22) b(g5 ) = [ mdrvue i gg € A

vy

We compute then p, = [r7g? dx + [r} - gl dy/[Frwl dx + [F5 - whdy, and
Q v Q %

set

(3.23) prtl = Pt — ppuf, UM = U™ - p, U,
(3.24) AL =A™ — p,wh, g" 1! =g" — pug”,
(3.25) PPt =1l — pn}, 13T = 1% — pail.

Iff?"”+1 mHldx + fr’”rl ol d'y/frlg dx + [r§-gddy < e, take A= X"11,
2
P=pr U= U"Jf1 If not, compute

(3.26) = / et lgit dx + / gt ghtdy/ / gt dx + / 13 - g7 dv,
Q ¥

and set whTl = g™ + v, W™
Don=n+1 and go back to (3.19).

3.3. Numerical experiments

Iy
o
Q
Ty
Figure 3.2.

We consider the test problem where w is a NACA0012 airfoil with zero degree
angle of attack centered at (0,0) and Q is (—0.625, 4.375) x (—0.5,0.5) (see Fig.
3.2). The boundary conditions are defined as follows:

(3.27) i { (1—e) (g) on Ty,

Oon~y,
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du
where ¢ is a positive constant and v— —np =0 on I'y.

on
As a finite dimensional subspace of V, we choose V}, = {vy|vs € Hg, x Hj,}

where
HYy, = {¢n|dn € C°(Q), dnlr € Pr, VT € Tp, ¢, =0 on Tp},

where T, is a triangulation of { (see, e.g, Fig. 3.3), P1 being the space of the
polynomials in z;, 7z, of degree < 1. A traditional way of approximating the
pressure is to take it in the space

HY, = {onldn € CO(Q), ¢nlr € P1, VT € Ton},

where T3, is a triangulation twice coarser than 7. Concerning the space Ap
approximating A, we define it by

Ap = {unlun € (L°(0w))?, un is constant on the segment joining

2 consecutive mesh points on Ow}.

A particular choice for mesh points on v is visualized on Fig. 3.3.
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FIGURE 3.3. MESH POINTS MARKED BY “x” ON «, PART OF MESH
POINTS MARKED BY “e” ON THE INTERFACE BETWEEN {; AND )5
AND PART OF THE TRIANGULATION OF {2 WITH h = 1/64.

Using the §-scheme, we solve at each time step two quasi-Stokes subproblems
by the one shot method (3.14)—(3.26) and one advection—diffusion subproblem
in a least-squares formulation by a conjugate gradient algorithm. We divide Q2
into two subdomains ©; = (—0.625,0.0) x (—0.5,0.5) and Qy = (0.0,4.375) x
(—=0.5,0.5) (see Fig. 3.4) and use domajn decomposition methods introduced in
Section 2 to solve the elliptic problems arising in the one shot method and in the
conjugate gradient algorithm for the least-square problems. The mesh points on
the interface between Q; and 5 are shown in Fig. 3.3.

Here we have chosen meshsizes h, = 1/64 for velocity and h, = 1/32 for
pressure, time step At = 0.01 and ¢ = 20 in (3.29). The number of iterations
for the one shot method is from 40 to 60 except the first several time steps.
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The number of iterations of the conjugate gradient method for the least-squares
method is from 1 to 2. In Fig. 3.5, we observe a Karman vortez shedding (here,
the Reynolds number is 1000).

Figure 3.4

=N O N
LRARAZ RAARS Manit Maais ¢

FIGURE 3.5. VORTICITY DENSITY (TOP) AND STREAM LINES (BOT-
TOM) FOR THE FLOW PASSING AROUND NACA0012 WITH ZERO
DEGREE ANGLE OF ATTACK. FLOW DIRECTION IS FROM THE LEFT
TO THE RIGHT, THE REYNOLDS NUMBER IS 1000, DIMENSIONLESS
TIME 1S 6.

4. Conclusion

Domain decomposition methods combined to fictitious domain methods seem
to provide an efficient alternative to conventional solution methods for the solu-
tion of Poisson and Navier—Stokes equations on parallel MIMD computer.

This new methodology looks also promising for the simulation of time depen-
dent solution of viscous flow problems around moving rigid bodies. However,
further experiments are needed for very large problems to explore parallelization
properties of one shot algorithm for 3-D flows, turbulent flow with one point
(Baldwin-Lomax) or two point (k—¢) closure models and also local higher order
approximations for higher values of the Reynolds number.
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