Contemporary Mathematics
Volume 180, 1994

Domain-oriented multilevel methods

M. GRIEBEL

ABSTRACT. For the discretization of elliptic linear PDFE’s, instead of the usual
nodal basis, we use a generating system that contains the nodal basis functions
of the finest and all coarser levels. The Galerkin approach now results in an
enlarged semidefinite linear system to be solved. Traditional iterative methods
for that system turn out to be equivalent to modern multilevel methods for
the fine grid system. Besides level-oriented iterative methods that lead to
multilevel algorithms, other orderings of the unknowns of the enlarged system
can be considered as well. A domain-wise block Gauss-Seidel iteration for
the enlarged system results in a certain domain decomposition method with
convergence rates independent of the mesh width of the fine grid. Furthermore,
this approach directly leads to a O(1)-preconditioner for the Schur complement
that arises in conventional domain decomposition methods.

1. The Generating System

Consider a partial differential equation with linear, symmetric and elliptic oper-
ator Lu = f in 2, with Dirichlet boundary conditions and associated weak formu-
lation a(u,v) = f(v),Vv € V. For the discretization on some grid 2, with uniform
mesh width Ay = 27% usually a basis By, = {¢§k),i = 1, .., ny } with nodal basis func-
tions ¢>§k) is used, that span the corresponding space V; = span{qﬁ,gk),i =1,..,n%}
Here, n;, denotes the number of interior grid points and thus the dimension of V.
Any function u € Vi can be denoted by

< *)
= ;-
i=1

with corresponding coefficient vector 'u,kB = (Ug,i)i=1,...n, Of nodal values. Now, the
Galerkin approach leads to the linear system

(1) Liug = ¢
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with the vector uf of unknowns.

In the context of multilevel methods for the iterative solution of (1), a sequence
Q4,Q9, ..., of grids, with associated sequence Bj, By, ..., By, of nodal bases and
corresponding spaces Vi, V3, ..., Vi with dimensions ni,ns, ..., ng is employed. In-
spired by that, we now will use directly the generating system

k
Ey,=BiUByU..UB, = UBk
=1
for the representation of functions in V4 and for the discretization process. Com-
pare also [2, 4]. This corresponds to the level-wise splitting V3, = fol V; of the
underlying discretization space Vi. Since E} is only a generating system and not a
basis, the representation of any function « € V; by

kE n
=303 a4
I=1 i=1

with the enlarged vector uf = (uf T ub T Hul )T is not unique any more.
For the simple 1D case, Figure 1 shows the functions contained in E; and one
example for a multilevel representation of a function.
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FIGURE 1. The generating system Ej in 1D (left) and the multi-
level representation of uz by Es (right).

2. The Semidefinite System

Now, we use the generating system F, directly in the Galerkin discretization
process. Then, we obtain the enlarged linear system

) Ly uk = fk
with semidefinite matrix LE where for i; = 1, oy, i =1,.,n, and iy, =1, ..,k

Lzt ts = (857, 6) and  (1F)ipu, = F(81?).



DOMAIN-ORIENTED MULTILEVEL METHODS 225

This linear system is of size nf = Ele n;, which is in 1D about 2 times, in 2D
about 4/3 times and in 3D about 8/7 times larger than ng, i.e. the size of (1).

Assuming a level-oriented ordering of the unknowns, we obtain the following
structure for LZ (here for the simple example of k = 3):

RILEP} RLEP] RyLY Ry
L = RILBP} RILEBP} RILE |=| R: |-L7- (PP P L)
L8p? L8Py LF I

where R{ = P}T and PJ? denotes the interpolation/prolongation from V; to V;,
j < i, and I; denotes the identity in V;. Note that P; =[]} Pf_‘g“. Thus, we
see that with help of the matrix

Se=(Pk PE . . . P, L)
our enlarged system (2) can be written as
SEL Skuf =S¢ fi-

Now, we see that the discrete Galerkin operators LE=RLLEPF,1=1,.,k, ie. the
stiffness matrices of every' level of discretization, are contained as diagonal blocks.
The couplings between different levels are contained in the outer diagonal blocks.
Note that our enlarged system is consistent, i.e. rank(L¥) = rank(LE, fF¥), and
therefore solvable. There exist many different solutions due to the semidefiniteness
of LE. Since the unique solution uf of (1) can be obtained from any solution uf
of (2) by uB = Syu¥, the idea is now to produce some uy for (2) by a traditional
iterative method and to apply Sk. This will be studied in the following sections.

3. Level-Oriented Methods

In the previous example we employed a level-wise ordering of the unknowus
uF that resulted in a level-block partitioning of the matrix LE and the system
(2) and was associated with the splitting Vi = Zf‘:l Vi=Yr 5", Vig,, where
Vig, = span{qb,gl)}.

Tt can be seen easily that traditional iterative methods for (2) are equivalent
to modern multilevel methods for (1), cf. [2, 4]. Note that this has also been
shown in [10] (in a slightly different but equivalent language). For instance, the
simple Jacobi-preconditioner for (2) is equivalent to the BPX-preconditioner {1]
for (1). The BPX-preconditioner can be written as BPX; = SiDE —IS'{, where
DE = diag(LF). Now, if we define the generalized condition number x of a positive
semidefinite matrix to be the quotient of the largest and non-vanishing smallest

eigenvalue, we obtain directly
_ — 1
K(BPX,LE) = k(SeDE " STLE) = s(DE ' STLESk) = s(DF ™ L))
and since k(BPXxLZ) = O(1) (see [6, 7, 10, 13]) we have

3) w(DE~'LE) = O(1).
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Thus, the Jacobi-preconditioned CG-method for (2) converges to some solution
within a number of iterations that is independent of k.

Furthermore, we can consider Gauss-Seidel-type methods for (2). They are
equivalent to multigrid methods with a Gauss-Seidel smoother, c.f. [2, 4]. For ex-
ample, the simple Gauss-Seidel iteration on (2) with level-wise ordering [ = 1,.., %k
corresponds to the multigrid (0,1)-V-cycle with one post-smoothing step by Gauss-
Seidel. The symmetric Gauss-Seidel-iteration corresponds to the (1,1)-V-cycle.
Here, an outer iteration switches from level to level and an inner iteration operates
on the specific grids.

The convergence rate of the Gauss-Seidel iteration on (2) can be estimated by

p=+/1-Ko/(1+K1)2=1-0().

_1/2LkED£’3_1/2 and

Here, Ko = Aminy, (LEY > ¢o > 0 (cf. (3)), where LF¥ = Df
co is some constant that is independent of k.

Furthermore, K; := [[FZ|, where FF is given as the lower triangle part of
fjf . With help of the Cauchy-Schwarz inequality (see, e.g. [4, 10, 12, 13]), K3
can be estimated from above by some constant independent of k. We get K; <
Amaz(|LE]) < 1 < 00, where |LP| denotes the matrix that is produced from L¥ by
taking the absolute value of each entry. Note that with Apax(LZ) < Amax(ILE]), €1
is an upper bound for the largest eigenvalue of the Jacobi-preconditioned matrix,
ie. LY, as well.

In addition, Ky < ¢; holds for all possible Gauss-Seidel traversal orderings, c.f.
[4]. Therefore, we obtain a k-independent convergence rate not only for the Gauss-
Seidel method for (2) with some level-weise traversal ordering that corresponds to
a multigrid method, but also for any other traversal ordering as well. This will be
exploited in the sequel.

4. Domain-Oriented Methods

Now, we consider domain-oriented Gauss-Seidel iterations for (2). We assume
a decomposition on 2 in J non-overlapping subdomains Q;,7 = 1,..,J, ie. Q =
U‘;:l ¥ with mutually disjoint interiors so that no grid point lies on an internal
boundary and split the grid points €; = U}I:l ﬂ{ on each level [ = 1,.., k accord-
ingly. Then, we group together the associated functions of Ej and the unknowns of
uf that belong to the same subdomain. The system (2) is partitioned analogously.
This corresponds to the splitting

h=3 (2w

i=1 \ I=1 zeqy

where j runs over the domains, { runs over the levels and z runs over the respective
grid points. Note that in comparison to the level-wise splitting of the previous
section the order of summation is exchanged. The term in parenthesis corresponds
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now to the block structuring of system (2). Figure 2 shows a 2D example with four
subdomains and k = 3.

FIGURE 2. Domain-oriented regrouping of F3 in 2D.

Now, we perform a block Gauss-Seidel iteration for the block partitioned system
(2). Then, an outer iteration switches from subdomain to subdomain. If we treat
the arising subdomain problems by one inner Gauss-Seidel iteration where within
each block a level-wise ordering of the unknowns is applied, we obtain in a natural
way a local multigrid method (i.e. a local (0,1)-V-cycle). Altogether, this results in
a Gauss-Seidel iteration for the overall system (2) with just a domain-wise traversal
ordering. Since we have seen in the last section that the upper bound ¢; < 0o of K;
is independent of the traversal ordering, we directly obtain that the convergence
rate of our domain-oriented Gauss-Seidel method is independent of k as well.

For the simple 1D case, Figure 3 shows the methodological difference between
the level- and domain-oriented methods.

|
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FIGURE 3. The level-oriented (left) and domain-oriented (right)
GS-methods for (2) in 1D, k= 3.

Note that for the inner block iteration some alternatives to the level-wise traver-
sal ordering exist. If we apply the domain decomposition principle recursively until
in every domain only one grid point is contained, we obtain the so called point-
block method as described in [3, 4]. Furthermore, if we restrict ourselves in each
subdomain to the subsystem belonging to By, (and keep the unknowns that belong
to Byl < k fixed) we can apply exact solvers as well. Note however, that for the
outer block iteration all degrees of freedom of Ej, take part in the residual compu-
tations. In contrast to the conventional domain decomposition method this allows
information to travel over long distances as well and maintains fast multigrid-like
convergence rates.
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5. Schur Complement Preconditioning

Now, we use the generating system approach to derive a simple preconditioner
for the Schur complement problem arising in conventional domain decomposition
methods. This preconditioner results in a condition number that is independent of

k.
For the ease of explanation only, we restrict ourselves to the

simple situation depicted left. There, the grid points are
split by the the middle line separator into the set of points
0?2 situated on the separator and the set of remaining grid
points Q) = Q;\Q2 that belong to the interior to the two
resulting subdomains.

The nodal basis system (1) is partitioned correspondingly, i.e.

(Ln L12)<U1>=(f1)
Lyy Lo Up fa

where us belongs to the separator and w; to the interior of the left and right
subdomain. Then, the Schur complement reads Kao = Loy — L21L1_11L12.

Now, we will use the corresponding part B} of the nodal basis By for the grid
points Qi but the corresponding part E? of the generating system FEj for the
separator. This results in a smaller generating system E, = By U E2. Figure 4
shows the center points and the supports of the contained functions.
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FIGURE 4. Support of the functions of Ey.

Now, using E}, the Galerkin approach results in the semidefinite system

L11 L{% Uy _ f1
g Ly )\ uf ) \

and, since L;; involves only Bj and is therefore invertible, we obtain the enlarged
semidefinite Schur complement

E _ rE Ey-17E
K22 - L22 - L21L11 L12'

Now, we could work directly with this semidefinite enlarged Schur complement KL
and the associated linear system KZuf = f¥ — LE L7} f1 like previously with LE
and (2). Moreover, we could apply level- or domain-oriented Gauss-Seidel methods
that would give us a non-unique solution of the Schur complement system, ete.

Here, however, we want to derive a preconditioner for K. A short calculation
gives

KE = 8T - (Lgy — Ly L Ln2) - SF = 87 - Koo - SF
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with Sy, = Sy B2 E2 — BZ, ie. the application of S, to the separator only.
Analogously to the BPX-preconditioner we can derive a preconditioner for Ko
from K£,. We obtain

022 = Skblzlng with Dk = diag(ng).

Note that this construction principle (use the nodal basis in the interior of the
subdomains but the subpart of the generating system Ej, on the separator) works in
the higher dimensional case as well. An analysis in [5, 8] shows x(ChaK22) = O(1).
A similar construction is given in [9]. See also [11], remark 10.3.

For our simple 2D example above and L = A, Table 1 gives the condition
numbers of Ky and Cyy Ky for different values of k. We clearly see that x(K22)
behaves like O(h; ') whereas k(CapK2,) behaves for sufficiently large k practically
like O(1). (The slight increase of the condition number is similar to that observed
for the BPX-preconditioner in 2D.)

TABLE 1. Condition numbers of Koo and Coys Koy for different k.

kK |2 3 4 5 6 7 8
k(Kz2) [1.95 3.84 7.64 1526 30.51 61.02 122.04
k(CoaKop) | 1.65 2.08 242 267 285 299 3.09
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