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Multigrid and Domain Decomposition Methods
for Electrostatics Problems

MICHAEL HOLST AND FAISAL SAIED

ABSTRACT. We consider multigrid and domain decomposition methods for
the numerical solution of electrostatics problems arising in biophysics. We
compare multigrid methods designed for discontinuous coefficients with do-
main decomposition methods, including comparisons of standard multigrid
methods, algebraic multigrid methods, additive and multiplicative Schwarz
domain decomposition methods, and acceleration of multigrid and domain
decomposition methods with conjugate gradient methods. As a test prob-
lem, we consider a linearization of the Poisson-Boltzmann equation, which
describes the electrostatic potential of a large complex biomolecule lying in
an ionic solvent.

1. Introduction

In recent years, multigrid (MG) and domain decomposition (DD) methods
have been used extensively as tools for obtaining approximations to solutions
of partial differential equations (see, for example, the references in [15]). In
this paper, we consider MG and DD methods for the numerical solution of
the Poisson-Boltzmann equation, which describes the electrostatic potential of
a large complex biomolecule lying in an ionic solvent (see, for example, [3, 14]
for an overview). We compare MG methods designed for discontinuous coeffi-
cients with DD methods, when applied to a two-dimensional, linearized Poisson-
Boltzmann equation. Several approaches are considered, including standard MG
methods, algebraic MG methods, additive and multiplicative Schwarz methods,
and the acceleration of MG and DD methods with conjugate gradient (CG)
methods.
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2. Background Material

The nonlinear Poisson-Boltzmann equation (PBE) for the dimensionless elec-
trostatic potential u(r) = e, 4(r)k5z'T~" has the form:

dme2\ o=
~V - (e(r)Vu(r)) + &? sinh(u(r)) = (kBTC’> Zziﬁ(r-ri), reR3, ®(c0) =0,

where ¢(r) denoctes the electrostatic potential at field position r. The coefficients
appearing in the equation are necessarily discontinuous by several orders of mag-
nitude, describing both the molecular surface (e(r)) and an ion-exclusion layer
(’(r)) around the molecule. The placement and magnitude of atomic charges
are represented by the source terms involving the delta-functions.

Using known analytical solutions for special situations, approximate boundary
conditions are obtained for a finite domain @ C R3 containing the molecule
and some of the surrounding solvent; the problem is then solved as a finite-
boundary problem. A linearized form of the equation is often solved as an
approximation to the full nonlinear problem [5, 9, 12]. Damped-inexact-Newton
methods combined with algebraic MG methods have been shown to be efficient
and robust for the full nonlinear problem [7, 8].

3. Multigrid Methods

Consider a nested sequence of finite-dimensional Hilbert spaces

HiCcHsC---CHy=H,
each with an associated inner-product (-,-); inducing the norm || - ||z = (-, 12,
Also associated with each Hj, is an operator Ay, assumed to be SPD with respect
to (-, -)x. The spaces Hj, which may be finite element function spaces or simply
R" (where ny = dim(Hy)), are connected by prolongation operators IX | €
L(Hk_1,Hk), and restriction operators I, ,’j_l € L(Hg, Hr—1). It is assumed that
the operators satisfy variational conditions:

(3.1) Apy =IFYAIE |, IFY=(IF )T,

These conditions hold paturally in the finite element setting, and are imposed
directly in algebraic MG methods.

Given B =~ A™! in the space H, the basic linear method constructed from the
preconditioned system BAu = Bf has the form:

(3.2) u"t! =y™ — BAu™ + Bf = (I — BA)u™ + BY.

Now, given some B, or some procedure for applying B, we can either formulate
a linear method using E = I — BA, or employ a CG method for BAu = Bf if
B is SPD.

The recursive formulation of MG methods has been well-known for more than
fifteen years; mathematically equivalent forms of the method involving product



MULTIGRID AND DOMAIN DECOMPOSITION METHODS 233

error propagators have been recognized and exploited theoretically only very
recently. In particular, it can be shown [2, 11] that if the conditions (3.1) hold,
then the MG error propagator can be factored as:

E;=1-BjA;=I-T5;)I—T55-1) I —Tra),
where:

k _ 7k k—1 k—i+2 7k— 'L-I—l k—1 k—1i k—~i+1 k-2 rk—-1 k
Ik—i_Ik—lIk—2 Ik~z+1I ’ I _I z+1I E—it+2 Ik I ’ Ip=1

Tra=IJAT Ay, Typ= IR I5A;, k=2,...,J,

where Rj ~ A is the “smoothing” operator employed in each space H;. We
make this remark simply to stress the similarities between MG methods and
certain DD methods discussed in the next section.

For problems such as the Poisson-Boltzmann equation, the coeflicient discon-
tinuities are complex, and they may not lie on coarse mesh element boundaries
as required for accurate finite element approximation (and as required for valid-
ity of finite element error estimates). MG methods typically perform badly, and
even the regularity-free MG convergence theory [2] is invalid.

Possible approaches include coefficient averaging methods (cf. [1]) and the
explicit enforcement of the conditions (3.1) (cf. [1, 6, 13]). By introducing
a symbolic stencil calculus and employing Maple or Mathematica, the condi-
tions (3.1) can be enforced algebraically in an efficient way for certain types of
sparse matrices; details may be found for example in [7].

4. Domain Decomposition Methods

DD methods were first proposed by H.A. Schwarz as a theoretical tool for
studying elliptic problems on complicated domains, constructed as the union
of simple domains. An interesting early reference not often mentioned is [10],
containing both analysis and numerical examples, and references to the original
work by Schwarz.

Given a domain Q and coarse triangulation by N regions {2} of mesh size
H, we refine (severa] times) to obtain a fine mesh of size k. The regions defined
by the initial triangulation ©; are then extended by & to form the “overlapping
subdomains” €}. Now, let V and Vj denote the finite element spaces associated
with the & and H triangulation of §2, respectively. The variational problem in V'
has the form:

Find u € V such that a(u,v) = f(v), Vv eV

The form a(-,-) is bilinear, symmetric, coercive, and bounded, whereas f() is
linear and bounded. Therefore, through the Riesz representation theorem we
can associate with the above problem an abstract operator equation Au = f,
where A is SPD.
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DD methods can be seen as iterative methods for solving the above operator
equation, involving approximate projections of the error onto subspaces of V'
associated with the overlapping subdomains ;. To be more specific, let V;, =
HBE)NV, k=1,...,N; it is not difficult to show that V =V; +--- + Vy,
where a coarse space V) may also be included in the sum.

As with MG methods, we denote Ay as the restriction of the operator A to
the space Vi. Algebraically, it can be shown that A; = NE ANy, where Nj is
the natural inclusion in R™, and N is the corresponding projection. In other
words, DD methods automatically satisfy the variation conditions (3.1) in the
subspaces Vi, k # 0. Now, if By = A;l, we can define the approximate A-
orthogonal projector from V onto Vi as Ty = NRp NI A. An overlapping DD
method can be written as a basic linear method as in equation (3.2), where the
multiplicative Schwarz error propagator E is:

E=I-BA=({I-Tn){I—-Tn-1)--- (I —To).
The additive Schwarz error propagator £ is:
E=I-BA=1—-w(To+Ti+---+Tn).

An additive-multiplicative variant has been proposed in [4], which takes only the
coarse space projection an additive term in the following way:

E=I-BA=(I-Ty\)I-Ty_1) - I ~T) - wTp.

This approach decouples the coarse problem in V), allowing it to be solved in
parallel with the other subproblems.

5. An empirical comparison of MG and DD for a 2D PBE

We now compare several MG and DD methods for a two-dimensional, lin-
earized Poisson-Boltzmann equation. The numerical solution proceeds as follows
for two test problems.

In each case, we begin with a simple “triangular” molecule with three point
charges. In the first case, we force the molecule surface to align with the coarsest
mesh in the MG methods, and to align with the non-overlapped subdomains in
the DD methods. In the second case, the discontinuities do not align with the
coarsest mesh or the subdomain boundaries (the “non-aligned” case).

Beginning with an initial mesh size H, we uniformly refine the mesh five
times, yielding a mesh of size h. Subdomains are then given a small overlap
(one fine mesh triangle, 6, = h;). Piecewise linear finite elements are used to
discretize the problem in all subdomains for the DD methods, and on all levels
for the MG methods; the DD methods employ a coarse space. Figure 1 shows the
initial triangulation and a sample overlapped subdomain, and a sample solution.
Table 1 gives a key to the remaining figures.

Figure 2 shows the performance of the methods, as a function of CPU time on
a SPARC 10, for the aligned problem. The MG methods appear to be the most
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TABLE 1. Various multigrid and domain decomposition methods.

Method Description
MG FEM-based MG, weighted Jacobi smoothing
M multiplicative Schwarz
A additive Schwarz (with a damping parameter)

AM multiplicative Schwarz with additive coarse term
CGMG CG preconditioned with MG

CGM CG preconditioned with M

CGA CG preconditioned with A

CGAM CG preconditioned with AM

MGG Algebraic MG, weighted Jacobi smoothing
CGMGG | CG preconditioned with algebraic MG

efficient methods; however, it should be noted that inexact subdomain solvers
often lead to improved DD solve times (we employed a sparse direct method).
Also, when viewed as error reduction per iteration rather than time in Figure 3,
multiplicative Schwarz and multigrid have strikingly similar behavior.

The non-aligned case is illustrated in Figure 4. As expected, the standard MG
method fails when the conditions (3.1) are strongly violated. The DD methods
remain robust for this problem, whereas the algebraic MG methods appear to be
the most efficient. However, note that setup time for the algebraic MG methods
(although negligible for this problem) can be quite substantial for some problems.

6. Summary and Conclusions

Convergence theorems for MG and DD methods, applicable in the presence
of discontinuous coefficients, rely heavily on the conditions (3.1). Although ad-
ditional assumptions must be employed to prove that the convergence rate is
independent of the meshsize, number of levels, or number of subdomains, very
general proofs (although with no rate information) can be given using essentially
only (3.1), demonstrating the robustness of this approach.

While the conditions (3.1) are enforced for the algebraic MG methods, they
also hold automatically for DD methods, independent of the location of dis-
continuities in the coefficients. This is not true for the coarse space, which is
identical to the MG coarse grid problem; the DD methods appearing in the plots
here include a coarse space, but do not explicitly enforce the conditions (3.1) for
the coarse problem. If the discontinuities were made worse, the DD methods
presented here might also have difficulty with the non-aligned case.

MG and DD methods are comparable sequentially for two-dimensional elec-
trostatics problems. DD methods seem to be naturally more robust, although
MG can be made robust and efficient by enforcing the conditions (3.1) explic-
itly. While the MG methods were generally more efficient, the DD methods offer
advantages, such as ease of implementation, as well as parallel implementations.
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FIGURE 1. An overlapping subdomain and a sample solution.

Multigrid and Domain Decomposition: Problem 1

10 — — T ? T

A-norm of the Error

CGMG MG CGM CGAM CGA M 1

i A ] 1

0 10 20 30 40 50 80
CPU Seconds

FiGure 2. CPU seconds for Case 1.



A-norm of the Error

MULTIGRID AND DOMAIN DECOMPOSITION METHODS

Multigrid and Domain Decomposition: Problem 1

CGMG CGAM CGA M
1072 CGM MG ]
0 10 20 30 40 50 60
lterations
FIGURE 3. Iterations for Case 1.
o Multigrid and Domain Decomposition: Problem 2
10 H T T T ¥ k)
MG

102 .

10 Ry .
5 L5 A
o R s
-g 10‘6 A R ] = T
e N S
o A ] Y
£ T A\ AM
210° 39 AN 1
< 1o R S %

10 ! ‘; TNy S . i
10 ! MGG M\ . M
CGMGG CGM CGAM CGA
1072 CGMG : E
0 10 20 30 40 50 80 70
CPU Seconds

F1GURE 4. CPU seconds for Case 2.

237



238

1.

10.

11.

12.

13.

14.

15,

M. HOLST AND F. SAIED

REFERENCES

R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid method
for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist.
Comput. 2 (1981), 430-454.

. J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence estimates for multigrid

algorithms without regularity assumptions, Math. Comp. 57 (1991), 23-45.

. J. M. Briggs and J. A. McCammon, Computation unravels mysteries of molecular bio-

physics, Computers in Physics 6 (1990), 238—-243.

. X.-C. Cai, An optimal two-level overlapping domain decomposition method for elliptic

problems in two and three dimensions, SIAM J. Sci. Statist. Comput. 14 (1993), 239-247.

. M. E. Davis and J. A. McCammon, Solving the finite difference linearized Poisson-

Boltzmann equation: A comparison of relazation and conjugate gradient methods, J. Com-
put. Chem. 10 (1989), 386-391.

. J. E. Dendy, Jr., Two multigrid methods for three-dimensional problems with discontinuous

and anisotropic coefficients, SIAM J. Sci. Statist. Comput. 8 (1987), 673-685.

. M. Holst, Multilevel methods for the Poisson-Boltzmann equation, Ph.D. thesis, Numerical

Computing Group, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1993, Also published as Tech. Rep. UIUCDCS-R-03-1821.

. M. Holst, R. Kozack, F. Saied, and S. Subramaniam, Treatment of electrostatic effects

in proteins: Multigrid-based-Newton iterative method for solution of the full nonlinear
Poisson-Boltzmann equation, Proteins: Structure, Function, and Genetics 18 (1994), 231-
245.

. M. Holst and F. Saied, Multigrid solution of the Poisson-Boltzmann equation, J. Comput.

Chem. 14 (1993), 105-113,

L. V. Kantorovich and V. 1. Krylov, Approzimate methods of higher analysis, P. Noordhoff,
Ltd, Groningen, The Netherlands, 1958.

S. F. McCormick and J. W. Ruge, Unigrid for multigrid simulation, Math. Comp. 41
(1983), 43-62.

A. Nicholls and B. Honig, A rapid finite difference algorithm, utilizing successive over-
relazation to solve the Poisson-Boltzmann equation, J. Comput. Chem. 12 (1991), 435~
445.

J. W. Ruge and K. Stiiben, Algebraic multigrid, Multigrid Methods (8. McCormick, ed.),
SIAM, 1987, pp. 73-130.

K. A. Sharp and B. Honig, Flectrostatic interactions in macromolecules: Theory and
applications, Annu. Rev. Biophys. Biophys. Chem. 19 (1990), 301-332.

J. Xu, Herative methods by space decomposition and subspace correction, SIAM Review
34 (1992), 581-613.

DEPARTMENT OF APPLIED MATHEMATICS AND CRPC, CALIFORNIA INSTITUTE OF TECH-
NOLOGY 217-50, PAsaDENA, CA 91125
E-mail address: holst@ama.caltech.edu

DePARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN,
UrsBaANa, IL 61801

E-mail address: saied@cs.uiuc.edu



