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AN EFFICIENT COMPUTATIONAL METHOD
FOR THE FLOW PAST AN AIRFOIL

GEORGE C. Hsia0, MICHAEL D. MARCOZZI and SHANGYOU ZHANG

ABSTRACT. A finite element—boundary element coupling procedure is applied to the
computation of an incompressible flow past an airfoil. By utilizing a representation of
the potential flow exterior to a circular auxiliary boundary, the reduced variational
problem on an annular region is solved by the finite elment method alone. Two
multigrid algorithms are introduced for the finite element equations. Both methods
are optimal in the order of computation. The singularity at the trailing edge of
the numerical solutions is corrected by the Kutta—Joukowski condition. Detailed
numerical implementation is presented.

We consider a steady uniform two—dimensional fluid flow past a thin airfoil. As
is customary, to arrive at a potential flow analysis, the compressibility and viscosity
of the fluid are neglected, and the flow is assumed to be irrotational. The problem
can then be formulated as an exterior boundary value problem for the velocity field
qa=(q1,92):

_ O | Og2

g 4 G2 in Q¢ :=R2\QUT,
V-q 5. " By 0 in \
vquz%—%:o in 0°,
(1) 85131 62)2
qn=90 onT,
qQ—q, =0o(l)  aslz]— oo,
limT l[q(x)| = Ja(T)| < o0 (Kutta~Joukowski condition).
X—

Here T is the profile of the thin airfoil {2 with one corner point at the trailing edge
T (see Figure 1), and g, is the given free stream velocity.
Alternatively, we can introduce a stream function 1 such that q = (V¢! =

(%’—’2—, —%b;). Denoting by u(x) the disturbance stream function due to the airfoil,

and setting ¥(x) = 1o (%) +u(x), where .. (2) = —q (%) - x, we may reformulate
the problem (1) as an exterior boundary value problem for u(x):

—Au=0 in Q°,
@) U= Yo onT,

u+ %log x| = Cy+o0(1) as|z| — oo.

In this formulation, however, both constants Cyy and s are unknown. Physically,
k is the circulation around the airfoil: & = f;.q - dx, which will be determined
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by the Kutta-Joukowski condition in (1). Following the principle of the finite
element — boundary element coupling procedure in [6] and [8], we introduce a
circular boundary Ty of radius a as shown in Figure 1. Let ©w = up in the annular
(finite element) region Qp, and © = up in the exterior (boundary element) region
Qp. The coupling of the two parts of u is by the following transmission conditions:

dup _ Oup _

(3) Tl and wp=ul
on I'g. By representing up(x fl"o (x y)up(y)dsy — [, 7(x,¥)o(y) dsy +Co
in Qp, we obtain the followmg coupled dlfferentlal — boundary integral system:
. Our.
—AUZO mn Qp, uFlr:_woca Frfi Lo =0,
(4) %u;—Ku}+Vcr—Cg=0 on [y
fFo o= —kK, + Kutta—Joukowski condition.

Here vy(x,y) = (—1/27)log |x — y| is the fundermental solution, V and K are the
simple-layer and double-layer potential operators on I'j respectively (see, e.g., [6]).
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Qp Qp

Figure 1. An alrf01l and the auxiliary domains.

Because of the specially chosen auxiliary boundary T'y, the integral equation
in (4) can be inverted exactly at the continuous level. Therefore the problem
(4) is reduced to the following variational problem (cf. [7] and [8]): Find ur €
H', (Qr)NH*QF)and x € R' such that

(5) a(ur,v) + 2(Vup,v) = f(v) Vv € H} (F),

where f(v) = (—3%,v). Here, v denotes the tangential derivative (on I'y), a(u,v) =
Jop Vu-Vodz, (v,x) = [, vxds, Hy(Qr) = {v € H(QF) | v = g(x)}, and
H™ = W™? are standard Sobolev spaces (cf. [1]). The Kutta—Joukowski condition
ensures that the correct solution to (5) has to be a regular function even near the
trailing edge T. Therefore by assuming ur € H?(Q2r), the problems (4) and (5)
are equivalent. For complete analysis of (4-5), we refer readers to [8].

To find the correct constant s such that up € H*(QF), we replace (5) by the
following two basic problems: Find u; € H}(QF) for i = 0,1, such that

(6) a(u;,v) + 2(Vus,v) = { (oo, 1) + 2Viheo,v) U i=0, o o g1q.
(-1/2ma,v) if =1,
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Figure 2. The polar coordinates near the trailing edge T.

We separate the singularity terms (at the trailing edge) from the solutions by u; =
cius+ (regular terms) (see [5] and [8]), where

,r w0
7 Us =177 COS ———
) s 2n—f

where polar coordinates are used at T (see Figure 2). Then up = uy + ku; has
no singular term us if K = —c¢1/co can be found. The stress intensity factors ¢
and c; are computed according to a conventional method (see, e.g., [9]) in our
computation, which will be presented below.
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Figure 3. Nonnested triangulations (level 1 and 4) on Qp.

To discretize (6), we use piecewise linear finite elments (cf. [4]) on a family of
nonnested triangulations (see Figure 3) {7x}, Tx—1 ¢ 7 which are graded toward
the trailing edge T. We refer readers to [3] and [10] for references on the multigrid
method on nonnested grids. Defining Vi to be the intersection of the k-th level
finite element space and Hj (2r), (6) reads: Find u; x € Vi, such that

(8) Atk + BVuk = fi,
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where (Agu,v) = a(u,v), (Bru,v) = 2(Vu;,v), fo = a(¥oo,v) + 2(V10o,v) and
fi = (=1/2na,v) for all u,v € V;. We have two multigrid algorithms (cf. [7] for
details) for solving the linear system (8). In one algorithm, we apply the multigrid
method to the operator A + By. The operator Ay + By, is shown to be symmetric
and positive definite in [7}.

Definition 1 (A direct multigrid method). Given wy approximating the solution
u; in (8), one k-th level multigrid iteration produces a new approximation w1
as follows. First, m smoothings are performed:

(9) w; = w1+ p(Ck)_l (f’l. - Ckwl—l) ) l= 17 e ,Mm,

where C, = Ay + By, and p(C) stands for the spectral radius of Ck or an upper
bound of it. Then we solve the residual problem on the coarse level

(10) Cro1a=1I} (f; — Crwm)

by doing p(> 1) (k — 1)-st level multigrid iterations to get §. Finally
W + 1§ if £>1,

11 =
(1) mtd {wm if k=1

Here the I; in (11) is the Lagrange nodal interpolation operator, and the I,/ in
(10) is the adjoint operator of I} under the L? inner—product. This operator I, is
needed since the multilevel finite element spaces are not nested: Vi_1 ¢ Vi, caused
by the nonnested grids and the curved boundaries.

In the second algorithm, we apply the multigrid method only to Ay, which is a

discrete Laplacian. That is, from an iterative solution ugj,g € Vi, the new solution
is !

(12) 'u,y,:"l) = ugj,z + we,

where w < 1 is a relaxation parameter and € € V; is a solution for the following
residual problem:

(13) . Age = f; — Aul) — Bul).

Definition 2 (A double iterative multigrid method). Given ugj,g approximating
the solution u; in (8), one outer iteration produces a new approximation uij,f Y as
defined in (12), where € is obtained by doing n(> 1) (inner) multigrid iteration(s)
with initial guess 0. Here the (inner) multigrid iteration is defined in Definition 1

where f; is replaced by the right hand side function in (13) and C}, replaced by Ay.

In [7], we proved that the speed of convergence for the multigrid method defined
by Definition 1 is constant independent of the number of unknows in the linear
system. Also in [7], we proved that the operator Agl(Ak + By, ) is well-conditioned.
By the standard technique of [2], we have the following theorem of the optimal
order of computation for the two multigrid methods (cf. [7]).
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Theorem 1. For both multigrid algorithms defined in Definitions 1 and 2, the
number of arithmetic operations for solving the linear system (8), up to the order
of truncation error, is proportional to the number of unknowns in the system. 0O

Figure 4. Contours of computed ug and u;.
In our numerical test, we let g, = (—1,1/4) in (1) where the domain is described
by a Karman—Trefftz airfoil profile defined by the transformation

(c=b)" +(c+)"

(14) z=—nb

(c=b)r—(c+b)m™"

This maps the outside of the unit circle to the exterior of a thin airfoil on the
complex plane. For our test, in (14), b =1, n = 1.9, d = 0.0707, i = \/—1, and
¢ =bd(1+1)+by/(b+d)? + d2e* for 0 < 6 < 27. The auxiliary (outer) boundary
is the circle of radius a = 3.5 centered at the origin. We emphasize again that by
the specially chosen outer boundary, the boundary element discretization does not
appear in the computation. We remark that the relaxation parameter w in (12) is
necessary to ensure the convergence (cf. [7]). It appears the best w is around 0.7
which is used in this numerical test (cf. [7] for the computational results on w).

On the 4th level we have about 5000 unknowns in the linear system (8). By
the first algorithm (Definition 1), we need about 10 multigrid V—cycle (p = 1 in
Definition 1) iterations with 8 smoothings (m = 8 in Definition 1). The computed
stream functions (on level 4) are depicted in Figure 4. We also tested the second
algorithm (Definition 2), where we apply the V—cycle iteration with 8 smoothings
in the inner iteration (stops after 4 or 5 cycles, rate is about 0.1 for the V—cycle
iteration). Then 5 outer iterations reduce the error (to the smooth solution) to less
than 1 percent. We comment that the work for both methods is about the same
because one evaluation of By (v € Vi) is more expensive than that of Agv (this
depends on the implementation, and can be avoided). However, both methods are
very efficient due to their optimal order of computation. In our test computation
on a SPARC station IPX, it takes a few seconds to solve the linear system on level
4.

From the solution u, in Figure 4, we can see that due to the singularity at the
trailing edge of the thin airfoil, the solution u, needs to be corrected by u, to obtain
a physical solution that satisfies the Kutta-Joukowski condition. Since the shape
of the thin airfoil is known, we know the exact singular term at the trailing edge as
specified in (7), where 3 &~ 3.2 ~ 18° is the angle for our airfoil. After we computed
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up and u;, we compute (cf. [9]) the coefficient ¢; of the leading singular term in

U;

= c;w + (smooth terms) by the formula:

¢ = / (Vu; - n)w™ ds —/ (Vw” - n)u; ds
> r=

for i = 0 and 1, where I'* is an arc surrounding the non—convex corner and w" :=
(=1/m)r~™/(27=5) cos(nf) /(21 — ) is the dual function satisfying Aw* = 0 in the
region bounded by I'* and I'. In our computation, I'* consists of the edges (depicted
by bold lines in Figure 2) around the trailing edge 7. The computed cy ~ 0.928348
and c; ~ 0.220257. After we found the singular terms in u;, we can get the correct

SO

[

lution up = u; + KUy = uy — (€3 /cp)up, which is plotted in Figure 5.

Figure 5. The computed solution ur on the level 4 grid.
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