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AN EFFICIENT COMPUTATIONAL METHOD
FOR THE FLOW PAST AN AIRFOIL

GEORGE C. Hsia0, MICHAEL D. MARCOZZI and SHANGYOU ZHANG

ABSTRACT. A finite element—boundary element coupling procedure is applied to the
computation of an incompressible flow past an airfoil. By utilizing a representation of
the potential flow exterior to a circular auxiliary boundary, the reduced variational
problem on an annular region is solved by the finite elment method alone. Two
multigrid algorithms are introduced for the finite element equations. Both methods
are optimal in the order of computation. The singularity at the trailing edge of
the numerical solutions is corrected by the Kutta—Joukowski condition. Detailed
numerical implementation is presented.

We consider a steady uniform two—dimensional fluid flow past a thin airfoil. As
is customary, to arrive at a potential flow analysis, the compressibility and viscosity
of the fluid are neglected, and the flow is assumed to be irrotational. The problem
can then be formulated as an exterior boundary value problem for the velocity field
qa=(q1,92):
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limT l[q(x)| = Ja(T)| < o0 (Kutta~Joukowski condition).
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Here T is the profile of the thin airfoil {2 with one corner point at the trailing edge
T (see Figure 1), and g, is the given free stream velocity.
Alternatively, we can introduce a stream function 1 such that q = (V¢! =

(%’—’2—, —%b;). Denoting by u(x) the disturbance stream function due to the airfoil,

and setting ¥(x) = 1o (%) +u(x), where .. (2) = —q (%) - x, we may reformulate
the problem (1) as an exterior boundary value problem for u(x):

—Au=0 in Q°,
@) U= Yo onT,

u+ %log x| = Cy+o0(1) as|z| — oo.

In this formulation, however, both constants Cyy and s are unknown. Physically,
k is the circulation around the airfoil: & = f;.q - dx, which will be determined
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by the Kutta-Joukowski condition in (1). Following the principle of the finite
element — boundary element coupling procedure in [6] and [8], we introduce a
circular boundary Ty of radius a as shown in Figure 1. Let ©w = up in the annular
(finite element) region Qp, and © = up in the exterior (boundary element) region
Qp. The coupling of the two parts of u is by the following transmission conditions:
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(3) Tl and wp=ul
on I'g. By representing up(x fl"o (x y)up(y)dsy — [, 7(x,¥)o(y) dsy +Co
in Qp, we obtain the followmg coupled dlfferentlal — boundary integral system:
. Our.
—AUZO mn Qp, uFlr:_woca Frfi Lo =0,
(4) %u;—Ku}+Vcr—Cg=0 on [y
fFo o= —kK, + Kutta—Joukowski condition.

Here vy(x,y) = (—1/27)log |x — y| is the fundermental solution, V and K are the
simple-layer and double-layer potential operators on I'j respectively (see, e.g., [6]).
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Figure 1. An alrf01l and the auxiliary domains.

Because of the specially chosen auxiliary boundary T'y, the integral equation
in (4) can be inverted exactly at the continuous level. Therefore the problem
(4) is reduced to the following variational problem (cf. [7] and [8]): Find ur €
H', (Qr)NH*QF)and x € R' such that

(5) a(ur,v) + 2(Vup,v) = f(v) Vv € H} (F),

where f(v) = (—3%,v). Here, v denotes the tangential derivative (on I'y), a(u,v) =
Jop Vu-Vodz, (v,x) = [, vxds, Hy(Qr) = {v € H(QF) | v = g(x)}, and
H™ = W™? are standard Sobolev spaces (cf. [1]). The Kutta—Joukowski condition
ensures that the correct solution to (5) has to be a regular function even near the
trailing edge T. Therefore by assuming ur € H?(Q2r), the problems (4) and (5)
are equivalent. For complete analysis of (4-5), we refer readers to [8].

To find the correct constant s such that up € H*(QF), we replace (5) by the
following two basic problems: Find u; € H}(QF) for i = 0,1, such that

(6) a(u;,v) + 2(Vus,v) = { (oo, 1) + 2Viheo,v) U i=0, o o g1q.
(-1/2ma,v) if =1,
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where (Agu,v) = a(u,v), (Bru,v) = 2(Vu;,v), fo = a(¥oo,v) + 2(V10o,v) and
fi = (=1/2na,v) for all u,v € V;. We have two multigrid algorithms (cf. [7] for
details) for solving the linear system (8). In one algorithm, we apply the multigrid
method to the operator A + By. The operator Ay + By, is shown to be symmetric
and positive definite in [7}.

Definition 1 (A direct multigrid method). Given wy approximating the solution
u; in (8), one k-th level multigrid iteration produces a new approximation w1
as follows. First, m smoothings are performed:

(9) w; = w1+ p(Ck)_l (f’l. - Ckwl—l) ) l= 17 e ,Mm,

where C, = Ay + By, and p(C) stands for the spectral radius of Ck or an upper
bound of it. Then we solve the residual problem on the coarse level

(10) Cro1a=1I} (f; — Crwm)

by doing p(> 1) (k — 1)-st level multigrid iterations to get §. Finally
W + 1§ if £>1,

11 =
(1) mtd {wm if k=1

Here the I; in (11) is the Lagrange nodal interpolation operator, and the I,/ in
(10) is the adjoint operator of I} under the L? inner—product. This operator I, is
needed since the multilevel finite element spaces are not nested: Vi_1 ¢ Vi, caused
by the nonnested grids and the curved boundaries.

In the second algorithm, we apply the multigrid method only to Ay, which is a

discrete Laplacian. That is, from an iterative solution ugj,g € Vi, the new solution
is !

(12) 'u,y,:"l) = ugj,z + we,

where w < 1 is a relaxation parameter and € € V; is a solution for the following
residual problem:

(13) . Age = f; — Aul) — Bul).

Definition 2 (A double iterative multigrid method). Given ugj,g approximating
the solution u; in (8), one outer iteration produces a new approximation uij,f Y as
defined in (12), where € is obtained by doing n(> 1) (inner) multigrid iteration(s)
with initial guess 0. Here the (inner) multigrid iteration is defined in Definition 1

where f; is replaced by the right hand side function in (13) and C}, replaced by Ay.

In [7], we proved that the speed of convergence for the multigrid method defined
by Definition 1 is constant independent of the number of unknows in the linear
system. Also in [7], we proved that the operator Agl(Ak + By, ) is well-conditioned.
By the standard technique of [2], we have the following theorem of the optimal
order of computation for the two multigrid methods (cf. [7]).





