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Newton-Krylov-Schwarz Techniques
Applied to the Two-Dimensional
Incompressible Navier-Stokes
and Energy Equations

P.G. JACOBSY, V.A. MOUSSEAUt, P.R. MCHUGHY, AND D.A. KNOLL{}

ABSTRACT. We present research on Newton’s method for the solution of the
two-dimensional finite volume discretization of the incompressible Navier-
Stokes and energy equations in primitive variables. Qur previous research
has employed a direct banded solver [6] and ILU preconditioned conjugate
gradient-like algorithms (GMRES, CGS, QMRCGS, Bi-CGSTAB) {7, 8] to
solve the linear systems arising on each Newton step. In this paper we show
results from a preliminary investigation that uses domain decomposition
to precondition the TFQMR conjugate gradient-like algorithm, showing
the dependence of convergence rate on overlap, blocking strategy, and the
additive/multiplicative trade-off.

1. Introduction

New numerical techniques are often tested on model problems that are over-
simplified with respect to geometry, boundary conditions, and neglect of multiple
scales. However, a better understanding of the processes at work, both physical
and numerical, motivates solving more complicated model problems. Simulation
codes for such models typically require solving very large systems of equations.
Fully implicit discretization techniques that employ iterative solvers with a high
degree of parallelism provide a viable mechanism for solving these more difficult
problems.

In this work we present results obtained by applying a combination of numer-
ical techniques of growing popularity for parallel computing, to model fluid fow
and heat transfer problems involving both natural (free) and forced convection.
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The model problems addressed here include natural convection in an enclosed
square cavity and internal flow past a backward facing step. The latter problem
is defined on a physical domain with a large aspect ratio. Section 2 presents a
description of these model problems. Section 3 presents a brief description of
the numerical techniques, while results of our investigation are given in Section
4. Section 5 contains some conclusions and prospects.

2. Model Problems
The following are the governing equations for the model problems we solve:
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The backward facing step problem (1] is defined in the region Q = [—.5, .5] x
[0,30] with Re = 100, Pe = Re- Pr = 70, and Gr = 0, and satisfies the following
boundary conditions:

v(z,0) = 3(42)(2 - 4x)
For z € [0,.5], T@JD:[L—@—4@ﬂ[1—%U~4@ﬂ
u(z,0) =0

For z € [-.5,0], u(z,0) = v(z, 0) = %Z—(m,()) =0

u(£.5,) = v(£.5,9) =0
Or(+5,y) =532

du v or

F € —'5a 5 [ 2 = 75\, = =5\Z, =
or z € | | By (x,30) By (x,30) By (z,30) =0

The natural convection problem is defined in the region {2 = [0, 1] x [0, 1] with
Re =1, Pe = Re- Pr = 0.71, and Ra = Gr - Pr = 10000, and satisfies the
following boundary conditions:

For y € [0, 30}, {

For (z,y) € 09, u(z,y) = v(x,y) =0

ar ar
For z € [0, 1], a—y(m 0)= 6—y(m, 1)=0
For y € [0,1], T(0,y) =0
T(ly)=1
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3. Numerical Techniques

The nonlinear governing equations are linearized utilizing an inexact Newton’s
Method [4]. The finite volume method on a staggered grid is used to discretize
the model PDEs in primitive variables. Next, the Jacobian for each Newton
iteration is formed by numerically evaluating the required derivatives [6]. New
Newton iterates are computed until successive vector iterates change by less than
107% in Euclidean norm. This linear system is solved by the preconditioned
iterative Krylov method, transpose-free quasi-minimal residual, (TFQMR) [5].
In an efficient inexact Newton approach, the Krylov solver is iterated until the
scaled residual is less than 10~2. For this work we use overlapping additive and
multiplicative Schwarz block preconditioners [2, 3].

4. Results

The finite volume discretization of the backward facing step problem uses a -
uniform grid with 24 cells along the x-axis and 96 cells along the y-axis. The
natural convection problem uses a 48 by 48 uniform cell structure. Thus each
implicit nonlinear system has 9216 degrees of freedom. The blocking for the
Schwarz preconditioners are chosen to be a uniform checkerboard pattern. In
the tables, the notation (bz x by) is used to indicate the blocking strategy which
has bz blocks along the x-axis and by blocks along the y-axis. The blocking
strategy is given in the first column of the tables. When overlapping is used
each block is “grown” uniformly to give either a three or four cell overlap. The
size of the overlap region is given in the first row of the tables. The values
reported in the table are the average number of TFQMR iterations per Newton
step required to meet the inexact Newton convergence criteria. For comparison,
a global ILU(0) preconditioner requires an average of 178 TFQMR iterations
per Newton step for the backward facing step problem, and 114 for the natural
convection problem.

Our initial studies are designed to obtain a better understanding of the per-
formance of these types of iterative methods applied to models with complica?ed
physics. We identify three major issues that should be considered when using
these methods. .

The first issue concerns the partitioning into subdomains. With comput?ﬂon—
ally complex problems, memory requirements will often dictate the minimum
number of subblocks. The choice of blocking strategy can be very important
in the convergence of the iterative algorithms. For example, Table 1 compares
the results for the case of six blocks (rows 4-7) for the backward step problem.
Using the additive Schwarz preconditioner with no overlap, the average T FQMR
iterations per Newton step is 183 for 6 x 1 blocking, whereas 1 X 6 biocku'lg' only
requires 14. Similar results hold for the multiplicative Schwarz preconditioner.
The natural convection problem shows a similar but less pronour.mefl dependence
on the blocking strategy, as evidenced in Table 2. These results indicate that the
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Table 1: Backward facing step problem results (ILU(0) requires 178 iterations).

“ “ Additive “ Multiplicative ”
|| Blocking [ No Overlap | 3 Cell Overlap [ No Overlap | 3 Cell Overlap I

1x4 7 8 4 3

2x2 29 21 14 7

4x1 91 35 48 17

1x6 14 13 4 4

2x3 31 22 15 8

3x2 63 30 30 12

6x1 183 70 82 30

3x3 64 40 33 ' 13

4x4 100 68 47 20

6x6 187 118 85 34

Average TFQMR iterations per Newton step

block aspect ratio significantly influences the performance of the preconditioner.

Another issue is the use of overlap. If a poor choice in blocking strategy
cannot be avoided, the use of overlap can significantly reduce the number of
required TFQMR iterations. Again, consider the 6 x 1 blocking case; the use of
a three cell overlap reduces the average TFQMR, iterations from 183 to 70 for
the additive Schwarz preconditioner.

The use of the multiplicative Schwarz preconditioner instead of the additive
Schwarz preconditioner can also provide performance benefits. The use of the
multiplicative Schwarz preconditioner generally requires less than half the it-
erations needed by the additive Schwarz preconditioner. For example consider
the backward facing step problem with 6 x 6 blocking and three cell overlap;
the additive Schwarz preconditioner requires 118 average TFQMR iterations per
Newton step while the multiplicative Schwarz preconditioner requires only 34.
We note that the serial nature of the multiplicative Schwarz preconditioner is
not a large deterrent to its use in a parallel computing environment since for the
checkerboard blocking the preconditioner may be realized with only four serial
steps through multicoloring.

5. Summary And Future Work

Our initial work indicates the blocking strategies play an important role in
the performance of the algorithms. Both cell and block aspect ratios should be
considered when selecting what blocking strategy to use. Several trials may be
necessary to “tune” the preconditioner. Improvements may be obtained by the
use of an overlap region and the use of the multiplicative Schwarz preconditioner.

Some future work will involve: extending these algorithms to systems of
convection-reaction-diffusion equations, distributing the preconditioner over a
heterogeneous network using PVM, adding a coarse grid solve, and performing
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Table 2: Natural convection problem results (ILU(0) requires 114 iterations).
” Blocking “ No Overlap | 4 Cell Overlap “

1x4 10 5
2x2 9 5
4x1 9 5
1x6 17 7
2x3 12 6
3x2 12 6
6x1 16 8
1x8 23 9
2x4 13 8
4x2 15 8
8x1 21 9
2x8 24 13
4x4 22 12
8x2 26 14
6x6 36 15
8x8 51 19
Average TFQMR iterations per Newton step

numerical eigenvalue analysis to study preconditioner effectiveness.
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