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ABSTRACT. A parallel subspace decomposition method for solving hyper-
bolic equatious is presented. For a linear model problem, the conservation
law is discretized by a cell vertex finite volume method on a triangular grid.
Additive and multiplicative Schwarz methods together with a new sequence
of subspace corrections are used for solving the normal equations, in a mod-
ification of the frequency decomposition approach [5]. Uniformly bounded
convergence rates for all characteristic directions are obtained. The present
approach may be extended to linear hyperbolic and elliptic systems [9].

1. Introduction

The numerical solution of flow problems is still a challenging task (see e. g. [1],
[2], [6], [7], [10]). The governing equations, e. g. the Euler equations of steady
flow, are a nonlinear system of composite elliptic/hyperbolic character. The
efficient solution of hyperbolic equations is a prerequisite for fast solutions of the
Euler equations.

Here we solve a simple hyperbolic model problem with constant coefficients:

(1.1) a1 0xu+a0,u=0, a3 >0,
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FIGURE 1. Subdivision of a square into two triangles

and x-periodic inflow and boundary conditions on the unit square. A conservative
integral formulation is given by Stokes’ theorem:

(1.2) / arudy —asudr =0,
or

for sufficiently smooth control elements 7 with boundary 97. .

A finite volume discretization on a triangular grid and a minimization problem
are introduced in section 2. In section 3 we present a subspace decomposition
approach and a parallel method based on an additive Schwarz iteration. Section 4
shows numerical results for additive and multiplicative Schwarz iteration. Details
are given in [8] and [9].

2. Discrete minimization problem

A regular triangular grid is introduced by subdividing the cells of an equidis-
tant grid according to Figure 1. This grid is equivalent to a triangular grid shown
in Figure 2. The conservation equation (1.2) is approximated by the trapezoidal
rule and yields for a triangle of type 7 £ 1:

1
(2.1) Lu(7jen) = 7 (a2 ujp — (a2 — a1)Uj k-1 — @1 Uj—1,k—1)

and for a triangle of type 7 2:

1
(2.2) Lu (Tjsksz) = 72‘ (0,1 Uj ke + (az — al)uj_l,k — Q9 U'j—l,k-—l) .

As there are twice as many triangles as grid points, the discrete system Lu = f
is overspecified and no solution of the flux equations exists in the general case.
Therefore a discrete minimization problem based on the squared Euclidean norm
E(u) = || Lu — f||3 is defined:

(2.3) Ew)< E(u),Vuel.
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FI1GURE 2. Location of coarse grid prolongations
The well known solution of this problem is given by the normal equations:
(2.4) AV =L'Lu* =L*f=b.

Matrix A is positive definite but not an M-matrix. The system is stable and
the solution is unique. The discrete solution is second-order accurate on an
equidistant grid (see [8]). This is rather surprising, because we do not fulfill
the flux equations (2.1, 2.2) exactly but only in the mean. Apparently, the
minimization procedure does not deteriorate the accuracy.

3. Subspace decomposition method

The discrete system (2.4) is solved by a subspace decomposition method. The
additive Schwarz variant is perfectly suited for a parallel algorithm. We introduce
several subspaces, U, = Range (p,), of the fine grid space U by prolongations
P« : V — U on a coarse grid space V. The prolongations are then given in stencil
notation:

( 0 1 1 0 1 17
=1 11 -1
Po=3 1 2 1 :pl—z ;
| 1 1 0 -1 1 0]
0 -1 -1 0 -1 17
p2=3 1 2 1},p=3]-1 2 -1
[ -1 -1 0 1 -1 0]

Here, py is the well known seven-point interpolation {3]. The other prolonga-
tions, defined on shifted coarse grids, are no more interpolations. The negative
signs represent oscillating components transverse to selected characteristic di-
rections. These prolongations are modifications of the frequency decomposition
approach [4, 5]. As the stencil notation gives no information on the location of
the coarse grid, Figure 2 shows the location of the center of the prolongations in
the triangular grid.
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Numerical tests showed that these four prolongations are not sufficient for
a robust method. It was necessary to introduce four additional prolongations
Po ... Ps with the same stencils as pg...p3 but located at shifted coarse grid
positions given in Figure 2. )

On each subspace Uy, 1 < & < K, smaller minimization problems are given
by:

(3.1) E(u+uv:) <Elu+v),VveU.

This defines coarse grid corrections G (u) = u+v,. We obtain the multiplicative
Schwarz method:

(3.2) BMS = (3G2G1GoG3G2G1Gy

With additional smoothing steps given by one iteration of the gradient method
S, we obtain a twogrid method:

(3.3) BTG = (338G25G19G6SG35G25G18GoS .

A parallel algorithm is obtained by an additive Schwarz method:

K
(3.4) S5 (u) =u+ Y 0t .

w=1

Where the coefficients o, are optimized by a small minimization problem:
: K
(3.5) E(@*5(u)) < E(u+v), Vo= .. .
wr=1

These corrections can be calculated in parallel on K processors and require
the solution of coarse grid systems with different condition numbers. Standard
iterative methods need different iteration counts on the processors which leads to
load imbalance. Therefore a solution algorithm with time complexity indepen-
dent of the condition, as e. g. a multigrid or a noniterative approach, is required
for solving the coarse grid systems. The determination of the o, and the update
of U is done sequentially on a single processor and needs communication. Al-
though the solution of (3.5) is a small problem compared with the solution of all
coarse grid corrections v,, it needs almost the same time as one correction. At
the moment the small problem is solved sequentially which causes some load im-
balance and reduces the parallel efficiency. The small problem should be solved
parallel on several processors at the cost of increased communication. Results
for parallel efficiencies are presented in [9].
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TABLE 1. Convergence rates for subspace decomposition methods

q |-40[-20[-10[-05[ 00 [025
p(®35) [ 0.87 | 0.83 | 0.88 | 0.87 | 0.74 | 0.87
p(®M5) | 0.63 | 0.64 | 0.64 | 0.64 | 0.47 | 0.65
p(®TC) | 0.64 | 0.54 | 0.55 | 0.53 | 0.44 | 0.50

g |050]075| 1.0 | 1.5 | 2.0 | 40
p(®45) 10.8810.86 | 0.73 | 0.88 | 0.87 | 0.86
p(®MS) | 0.67 | 0.65 | 0.47 | 0.63 | 0.64 | 0.62
p(®7%) | 050 | 0.52 | 0.44 | 0.54 | 0.56 | 0.59 |

4. Numerical results

The accuracy of the minimization solution is discussed in [8]. Here we present
convergence rates for additive and multiplicative Schwarz iterations.

All results in Table 1 are asymptotic error reduction rates obtained on a 32x 32
grid. The robustness of the two-grid iteration is analyzed. The characteristic
direction, represented by the parameter ¢ = a1/as, has only minor influence
on the convergence. Convergence rates are uniformly bounded and thus all
presented methods are robust. As expected, the multiplicative Schwarz iteration
is faster than the additive variant. With smoothing we obtain error reduction
rates of approximately 0.5.

5. Conclusion

A new parallel algorithm for solving hyperbolic equations is presented. The
linear advection equation is used as a model problem. The conservation form
of the equations is discretized on a triangular grid by a cell vertex scheme.
The overspecified system is transformed into a minimization problem which is
uniformly stable for all characteristic directions. The solution is second order
accurate on an equidistant grid.

The normal equations are solved with a subspace decomposition technique.
Subspaces are defined by prolongations on a coarse grid. It is a modification of
the frequency decomposition approach of Hackbusch |4, 5}.

The multiplicative Schwarz iteration together with smoothing iterations shows
good convergence rates of approximately 0.5. For the additive Schwarz iteration
we obtain slower convergence rates of approximately 0.9, but the algorithm may
easily be parallelized.

In all cases, the convergence rates are independent of the characteristic direc-
tion; thus the algorithm is robust. This is essential for future applications on
flow problems with varying flow directions.

The present approach can be extended to linear and nonlinear systems. Re-
sults for linear systems are presented in [9]. The extension to Euler and Navier-
Stokes equations is planned for future work.
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