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Numerical Treatments for the Helmholtz
Problem by Domain Decomposition Techniques

Seongjai Kim

Abstract. A parallelizable iterative procedure based on nonoverlap-
ping domain decomposition techniques for numerical solution of the
Helmholtz problem in a bounded domain is discussed. An automatic
efficient strategy for choosing the algorithm parameter is demonstrated.
Numerical results are reported.

1. Introduction
Consider the (complex—valued) scalar Helmholtz problem
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where Q C IR?, d < 3, is a bounded domain with a Lipschitz boundary T = 852,
the coefficient ¢(z) denotes the wave speed and is bounded below and above
by positive constants ¢y and c;, respectively, v is the outer unit normal to T,
and the angular frequency w > 0. The second equation of (1.1) represents
first—order absorbing boundary condition that allows normally incident waves
to pass out of () transparently.

The Helmholtz problem appears difficult to solve. In addition to having
a complex—valued solution, the problem (1.1) is neither Hermitian symmetric
nor coercive; as a consequence, most standard iterative methods either fail to
converge or converge so slowly as to be impractical. The question to be treated
in this paper is that of finding the numerical solution of {1.1) in an effective
and computationally efficient fashion. We shall define a parallelizable domain
decomposition iterative procedure and indicate an efficient strategy of choosing
iteration parameters.
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Concerning the iterative numerical solvers for the Helmholtz problem, we
refer to Bayliss, Goldstein and Turkel [1] for the preconditioned conjugate—
gradient algorithms applied to the normal equations, and Douglas, Hensley
and Roberts [2] for an ADI algorithm. The convergency of the strip-type
domain decomposition algorithms has been tested by the author [3].

An outline of the paper is as follows. In §2 the domain decomposition
algorithm is defined and the iterative procedure using the Robin—type interface
condition is illustrated for finite difference approximate solution of the problem
(1.1). In §3, an automatic efficient strategy for finding the algorithm parameter
is presented. Some experimental results are reported in §4. The last section
indicates the conclusions and possible applications.

2. Domain decomposition iterative procedure

Let {Q;, j=1,..., M} be a partition of Q:
Q=UL.Q; N =0, j#k

Assume that Q;, j = 1,2,---, M, is convex. In practice, each §; would be a
rectangular or cubic region. Let

I';= I‘mBQj, Tijg =Ty; = 8Qj Ny, XY= Uj’f’k:lI‘jk.

Let us consider the decomposition of the problem (1.1) over {2;}. The
problem (1.1) is equivalent to the following: Find u;, j=1,..., M, such that

—aW Ay = fl2), zely,
W Ou;
(2.1) Z"C"UJJ + e 0, zely,
Ou; . Oup .
a_l/j + Zﬁu:,' = _B_Vk +ifug, =€ ij,

where v; is the outwards normal to €, the consistency conditions are replaced
by the Robin interface boundary condition, see [6, 3]. The algorithm parameter
0 is a complex function on X with Re() > 0, for which the subproblems in (2.1)
are well-posed. The problem (2.1) is very interesting from a computational
point of view; we do not know of any convergence analysis for the problem.
Let © ¢ R? be composed of M nonoverlapping rectangular regions with the
interface edges parallel to either coordinate axes. Let 62 denote the centered
second order difference with respect to z, and 8,, 8¢ and 8, be the centered,
forward and backward first differences, respectively, in the direction of the
outer normal (here, an exterior bordering of the domain is assumed). Let
Ap =82+ 62. Then, one proper finite difference approximation to (2.1) for
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Fig.3.1: (i). A decomposition of the domain Q with mesh lines. (ii). The tridiagonal
system for the restricted one—dimensional problem on Q¥°. (iil). The matriz U of
the LU -factorization performed up to the (m — 1)—th row.
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two—dimensional problems can be defined by

—w2u]” - Ahu;-l = f, z€fy,
(2.2) wui +0,uy = 0, zely,
Opuy +ifu; = Bbuz_l +1'ﬂu2°1, z € Tjg.

Note that the Robin boundary condition is approximated by a combina-
tion of forward-backward differences. This combination is very necessary for
both convergence and efficience, and the second—order approximation of the
(centered) five point finite difference scheme would not be destroyed. For each
subdomain ;, only the subdomains sharing an edge as an interior interface
boundary are considered as the adjacent subdomains £2.

3. ADOP: Alternating Direction Optimal Procedure

In this section we present a heuristic, automatic method of finding efficient
algorithm parameter 3 for general coefficient problems. Consider an L-shape
domain and its domain decomposition depicted in Fig. 3.1 (i). There the bold
lines denote the interfaces. We shall determine 3, line by line, by using hori-
zontal or vertical mesh lines.

Let us find the values of 3 on the dotted points along the line y = yo. Ig-
noring the term wu,,, we restrict our problem to the one-dimensional subspace
Qv := {(z,y) : y = yo} decomposed into three subdomains with two dot-
ted points being the interfaces. If the points in (¥ are ordered from left to
right, one iteration for the restricted problem can be performed by inverting a
block diagonal matrix (three blocks), where each block is a tridiagonal matrix
of dimension, say, m, see Fig. 3.1 (ii). First, consider the tridiagonal block cor-
responding to the left-end subdomain. When the LU-factorization in which
the diagonal elements of L are 1 is performed up to the {m ~ 1)—th row, the
matrix U can be expressed like in Fig. 3.1 (iii). This factorization is possible
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even if the block has not been completely assembled on the interface point. We
choose 3 satisfying

c .
(3.1) ~ =1-—1iph,

on the first interface point. By using this &, one can complete not only the
last row of the first block but also the first row of the next block corresponding
to the mid-subdomain. Now, we consider the second tridiagonal block. After
performing LU—factorization up to the (m — 1)~th row, choose 3 for the second
interface point as in the first case. For each mesh line having interface points,
including both the horizontal and the vertical mesh lines, this searching can be
continued. This procedure is readily applicable to the multiple decompositions
of more general domains, clearly. This procedure is developed in [4] and referred
to ADOP (alternating direction optimal procedure):

LEmMaA 3.1 ([4]). Let G be the iteration matriz of the one—dimensional
problem of (2.2) restricted on Q¥° | with the parameter 3 found by ADOP. Then
the spectral radius of G is zero, i.e., p(G) = 0.

The above lemma implies ADOP seeks the parameter 8 in such a way that
the spectral radii of the iteration matrices of the one-dimensional alternating
direction problems are zero. It should be noticed that ADOP is automatic and
non-expensive. In the next section, efficiency of ADOP will be numerically
checked.

4. Numerical results

This section reports some experimental data for the algorithm (2.2) with
the parameter 3 founded by ADOP. In [4], it is numerically checked that the
ADOP parameters introduce a faster convergence than any other constant pa-
rameters. The computation is performed in complex double precision on an
IBM RS/6000, a serial machine. Let © = (0,1)%. For the results reported
in this section, the source function f is selected such that the true solution

u(z,y) = %@, where ¢(z) = (=1 4 =% _ 9 Zerg initial values
are assumed. Each subproblem in the algorithm (2.2) is solved directly. The

] u" — o
errors are estimated on the relative L*>-error v, = Hﬂ_ull_@’ where U™
. . Ujl o= )
is the approlxmlate solution of the n—th iteration. For the stopping criterion,
o -uvn—|

— =) < 107* is used. We choose three different typical functions
U™z (e
for ¢z, y):
a(z,y) = 1,
(4.1) ez, y) = 1+22% +y,
c3(z,y) = €*¥(2—sin(2nz))(2 + sin(4ny)).

In Table 4.1, iteration counts n and the error r2, are presented for various
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M;xM, |1x1 2x1 4x1 8x1 16x1 32x1 64x1
n - 10 10 21 68 147 200
Ty 048 048 048 049 048 049 -048

x

Table 4.1:  Strip decompositions, when w =25, c=c¢, and h = 1/64.

M, xM, | 1x1 2x1 5x1 10x1 15x1 20x1 30x1
n - 21 34 80 75 95 123
e 026 .026  .026 .026 .026 .026 .026

time(sec) | 88.0 46.0 26.6 40.3 35.2 42.5 54.1

Table 4.2:  Strip decompositions, when w = 40, ¢ = c; and h = 1/120.

| M, x M, [ 4x1 4x4 8x1 8x8 16x1 16x4 16x16
N 343 419 544 742 864 861 1167
Toop0 .0265 .0265 .0265 .0264 .0264  .0263 0264

Table 4.3: Total iteration numbers N for solving 100 time steps of the problem (4.2)
and the error Tooo, when w =25, c=cs, h = 1/64 and At =1/200.

strip domain decompositions M; x M,, when w = 25, ¢ = ¢;, and h = 1/64.
Table 4.2 shows iteration counts n, the error 7% and the CPU—time(second),
when w = 40, ¢ = ¢z and A = 1/120. For these two examples, constant
parameters cannot be used, and the standard iterative methods (relaxations
and extrapolations) do not converge.
Next, we consider the following time-discretized Schrédinger problem:

u™m — um—l w2
. - mo__ m —_ tm Q
AT cx)?" i;u flxtm), xed,
(4.2) z'—w—um + AT 0, xel,
e(x Ov
wW(x) = wo(x), x €,

where x = (z,y) and ™ = m At for some At > 0. To check the error propaga-
tion, we choose the true solution u(z,y,t) = (1.5 + sin(nt)) ¢(z) #(y) /w.

Table 4.3 indicates the total iteration counts N to solve the first 100 time
steps of the problem (4.2) by using the domain decomposition method presented
in §§2-3 and and the errors

U™ — u™|eo

max
1<m2100 [lu" oo

Togpo = )
where U™ is the approximate solution at ¢t = ™, whenw = 25,c =3, h = 1/64
and At = 1/200. The average iteration counts for solving the problem of one
time step can be obtained by dividing by 100. When on each time step an
one—domain direct solver is used, we have the error ro,. = .0265.



250 ’ SEONGJAT KIM

5. Conclusions

We have defined a nonoverlapping domain decomposition iterative pro-
cedure for the (complex—valued) Helmholtz problem in the finite differences
framework. By a combination of forward—backward finite differences, the Robin
interface boundary condition is approximated. An effective strategy for finding
the algorithm parameters ADOP is introduced and the effectiveness is numer-
ically tested. In addition to being effective, ADOP is automatic as a prepro-
cessor and its cost is never expensive.

When an iterative (domain decomposition) algorithm is designed, iteration
parameters are often introduced to accelerate the convergence speed of the
iteration. For certain model problems, the parameters can be selected easily
and effectively. However, the problem of choosing iteration parameters for a
realistic problem may not be so simple. ADOP is proposed as an answer to the
problem of choosing iteration parameters.

For the problem (1.1), it is numerically checked that if max(£)k < % and
M, < ﬁ, the procedure ADOP leads to convergence for strip domain decom-
positions. A numerical example for Schrodinger equation is added. From the
example, one can expect ADOP will be more useful for singularly perturbed
problems such as, e.g., second order time-dependent partial differential equa-
tions. When the wave speed ¢ in (1.1) is complex—valued with Re(e) > 0 and
Im(c) > 0, the convergence of the iterative algorithm (2.2) can be analyzed [5].
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