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Abstract
A multi-grid domain decomposition approach by the pseudospectral ele-
ment method is used to simulate a two-dimensional jet emanating from the
nozzle. The solution technique is to implement the Schwarz alternating proce-
dure for exchanging data among subdomains, where the coarse-grid correction
is used to remove the high frequency error.
Numerical results of jet flow not only provide the possible mechanism of
turbulence formation, but also quantitatively capture all the phenomena for
flow transition from the laminar to the turbulent structure.

1 Introduction

Turbulence, a phenomenon related to but distinct from chaos, has been increas-
ingly in the focus of physics research in a variety of flows for the last two decades.
Although there is no unique mathematical model that encompasses all flow envi-
ronments, it is possible to gain an insight into turbulence through direct numerical
simulation (low Reynolds numbers). In order to model all the features of turbu-
lence, one needs to resolve the smallest length scale, i.e., the Kolmogorov length
scale at which the turbulent energy carried from the large length scales is dissipated
into heat by the molecular viscosity. Based on the Kolmogorov dissipation scale,
the ratio of length scales in one dimension is estimated as the reciprocal of Ref.
Thus, in the Kolmogorov theory of three-dimensional turbulent flow, there are at
least on the order Red dynamically active degrees of freedom for a given volume.
A special device is used to simulate the two-dimensional turbulence of jets by
imposing a strong stratification along the vertical direction, so that the resulting
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flow occurs mainly in a horizontal plane. This allows the direct numerical simulation
to be performed on the HP9000/735 work station machine.

To address the goal of the direct numerical simulation of turbulent flow, the
desired features of numerical algorithms are: (1) applicability to a variety of geo-
metrical shapes; (2) high resolution in steep gradient areas (multi-grid or single-grid
technique); (3) minimal working space (domain decomposition); and (4) low run-
ning time of computation (multiple processors). A novel pseudospectral element
method [1] that contains the above mentioned features is ideally suitable for the
proposed work.

2 Navier-Stokes Equations

For an incompressible flow, the time-dependent Navier-Stokes equations are:

Ou +u-Vu=-Vp+ I—;;vzu, (1a)

bt
V.ou=0. (1b)

Here u is the velocity vector, p the pressure, Re = UL /v the Reynolds number (U, L
the characteristic velocity and length, respectively), and v the kinematic viscosity.
To simplify the notation while explaining the basic ideas, we write the equations
as if we could compute exact spatial derivatives in the curvilinear coordinates. The
method utilized to solve the Navier-Stokes equations is fourth-order Runge-Kutta
time integration scheme based on the Chorin’s [2] splitting technique. According to
this scheme, the equations of motion read
Ou; O
5 tow =F (2)
where F; = ~u;0u;/0z; + l/Reazu;/ax?.

At each stage, the first step is to split the velocity into a sum of predicted
and corrected values. The predicted velocity is determined by time integration
of momenturn equations without the pressure term and the second step develops
pressure and corrected velocity fields that satisfy the continuity equation.

1st stage: a} = ol + %EF.'(H?) (3a)
1_ 1 Atdp By}
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2nd stage: af = ul + %EF.‘(U}) (4a)
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3rd stage: @3 = ul + AtFy(u?) (5a)
~ dp Oud
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u = 4y — At 52’ Bm; 0; and (5b)
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The main features of this method include: (i) for a given accuracy the time step
size is larger than that of the first-order scheme and (ii) the most promising time
integration scheme conserves the total energy during the evolution of inviscid flow
[1]. The approach is very effective for flow at high Reynolds numbers because the
gain in time step size offsets more than the cost of four pressure solvers.

At each stage, the pressure Poisson equation can be generated by taking the
divergence operator of the corrected velocity. In the Cartesian coordinates a direct
solution of pressure equation can be obtained by the eigenfunction expansion tech-
nique [3], while in the curvilinear coordinates the pressure solution is governed by
the iterative preconditioned minimal residual method [1].

3 Domain Decomposition with Multi-Grid SAP

The SAP iterative scheme has been successfully applied to those configurations
where the overlapped grids coincide with each other [3]. Under this condition,
which we call the single-grid SAP, no data interpolation error occurs. The success
of the single-grid SAP lies in the exclusive use of the continuity equation as the
pressure boundary condition in the overlapping area, and the velocity difference in
the overlapping area is reduced by one order of magnitude after each SAP iteration.
Under some circumstances, the overlapped grid positions may not coincide with e:?ch
other due to the complexity of the geometrical configuration, as in a subn.:anne
or automobile, where there arises a need for a possible layout of mixed grids or
the application of adaptive fine grids in one subdomain to resolve steep chfmges
of variables. But simply exchanging the data through interpolation in the inter-
overlapping areas will cause high-frequency error and pollute the results throughout
the whole computational domain [4]. o

The multi-grid technique, which has long been advocated by ﬁnlte—d}fferer}ce
users [5], employs a sequence of grids to accelerate the convergence of 1t'eratxve
methods. The work rests on “standard coarsening,” i.e., doubling t‘he mesh in each
direction from one grid to the next coarsest grid. The problem is solved on the
coarse grid, and the coarse-grid correction is recursively transfe}'red back to the fine
grid to obtain rapid convergence. It can apply to the overlapping area as well [5]

In addition to the Lagrangian constraint between the pressure and ?eioclf;y
field, the noncoinciding overlapped grids (nonequal-spacecﬁl collocation po;nts) in
the inter-overlapping areas enhance the difficulty of applyl'ng the Ijnult.l-gnd tef:h-
nique. However, the idea of “coarse-grid correction” is still eﬁ'ec‘tlve in redu_cmg
high-frequency error. The strategy behind the coarse-grid cc';rrectlon process is to
adopt the idea proposed by Thompson and Ferziger [6], modified as

Ve ue— Ve (Hup)=H(ry =V up). ]

Here V.. represents the operator of divergence on the cf)arse;grid subdomz'zm. {ff_
is an interpolation operator from the fine-grid subdomain © 7 to coarse grid fsuh
domain “c”, and u is the velocity. ry is simply the resul? of the dwergence 3. ﬂ% e
velocity field which should be set to zero. The left-hand side ?f Eq.(7)is ‘the (; e}:’—
ence between the coarse-grid operator acting on the co:arse-gnd sui?doma‘mha}: ht 12
coarse-grid operator acting on the interpolated ﬁn&gr;d subdomain (whic md'e )
fixed). When substituting the coarse-grid vel?city in terms of pressn;e gra 131;
(Egs. (3 - 6)), the first term on the-left hand sxde.of Eq. (7) becorges‘ ; e g};ess(?)
equation acting on the coarse-grid subdomain, while the right-hand side of Eq.
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is the interpolated residual of V - u from the fine-grid subdomain. It is apparent
that once the solution of the fine-grid subdomain has been found the residual will
be zero (exactly satisfy the pressure Poisson equation), which implies

u, = IgUf. (8)

When the residual is non-zero, Eq. (7) acts as a forcing term for the coarse-grid
correction and transfers the correction of u back to the fine-grid subdomain, i.e.,

u}” = uf? + I(u, — Juf?). 9)

This is vital for the success of the scheme. Changes in the velocity field are trans-
ferred back to the fine-grid subdomain rather than the velocity field itself. Mean-
while, the error index, £, norm of w =|| u, — Ifu; ||, provides a good monitor
for the evolution of the flow field. Any unexpected increase in w reflects that an
extremely steep change of flow field occurs in the overlapping area, otherwise, the
error index w should remain in the same range of order of magnitude. Notice that
when the overlapped grids in the overlapping areas are coinciding with each other,
the interpolation operator I becomes a unitary matrix.

The multi-grid domain decomposition technique for the direct numerical simu-
lation of jet flow sketched in Fig. 1 is summarized by the following algorithm:

1. First set u"*! on AB,CD, EF,GH. Usually u”® will be a good initial guess.

2. Solve the fine-grid domain I1I employing the boundary conditions derived from
the continuity equation on AB,CD, where the pressure solution is directly
obtained by the eigenfunction expansion technique. While in domain I with
the same type of boundary condition for the pressure on EF, GH, the iterative
preconditioned method is used to get the pressure solution.

3. With the interpolated u™*! from step (2) on domain III N IV, solve the
coarse-grid domain IV to update uw”+! on domain ITI N IV by the coarse-grid
correction process. With the velocity u®+! along IJ, KL from domain I &
I11, a single grid method is to give the pressure solution for domain II.

4. Repeat steps (2) & (3) until the error index w among the overlapping areas
meets the convergence criterion.

4 Results and discussion

In the interest of brevity, no effort is made hereafter in this paper to discuss the
turbulent quantities, the fluctuation velocity (u!) and turbulent stresses (ujus).
However, they can be derived from the mean velocity (temporal average based on
every time interval}, i.e., u} = u; — 4;, and uju; = Ty — ;.

In order to make a comparison with the results obtained by the experiment, a
realistic experimental scale of will be used by the direct numerical simulation. A
slit of 0.1 inch wide is designed as the narrow part of a round nozzle whose diameter
is 0.125 inch. A jet flow is discharged into a stratified tank with 1.5 feet wide and
1.5 feet long, and the upstream of a nozzle is connected by a 6 inch wide reservoir
in which the fluid is driven by a constant moving piston.

As illustrated in Fig. 1, the computational domain is decomposed into four sub-

domains with overlapping areas: the upstream reservoir where a constant moving
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piston is used to drive the flow, the convergent nozzle where the incoming flow from
the reservoir is developed to gain a high speed, the immediate downstream from the
entrance of the nozzle where the high speed jet is discharged into the tank, and the
far downstream area where a well-developed turbulent flow can be traced. In order
to resolve the Kolmogorov length scale in the interesting area (indicated by the fine
grid distribution), for the case of Re = 500, the number of points (element layout
as plotted in Fig. 2) applied to each subdomain is 61 x 79 for domain I, 61 x 31
for domain II, 115 x 151 for domain II1, and 97 x 139 for domain IV, separately.

Figs. 3 depict the streamline plot of jet flow at Re = 500. During the time
evolution of jet flow, the symmetry of jet front will not be distorted at the early
stage (laminar flow as seen in Fig. 3a) until the phase speed of the vortex shedding
(due to flow instability) travels faster than that of jet front. Fig. 3b shows the onset
of vortex shedding and Fig. 3c demonstrates that the jet front is not symmetric any
more. A pair of vortices adjacent to the jet front represents the extrusion of the jet
into the ambient fluid. Once the jet front is caught up by the incoming travelling
waves, the energy transferred by the vortex shedding, in a cascade process from
the highest at the nozzle exit (high shedding frequency) to the lowest at the jet
front (low shedding frequency), splits into two parts: one for the jet front pushing
against the ambient viscous fluid, and another travelling back, causing a wave-wave
interaction. Initially, the wave-wave interaction starts close to the jet front and
gradually propagates backward toward the nozzle exit. This process constitutes
a complete mechanism to account for the turbulent formation. The longer the
elapsed time, the more unstable the flow becomes. Fig. 3d gives a clear picture of
flow development (nearly turbulent) at a longer time. A few distinct pairs of vortices
always exist within 1 to 5 inches of the nozzle exit, the appearance of which are
also confirmed by an APL Fluid Dynamics Laboratory experiment.
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Figure 1: Configuration of domain Figure 2: Element layout of jet flow
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Figure 3: Streamline plots for Re = 500 at time (a) t = 120, (b) t = 150,
(c) t = 180, and (d) t = 255.





