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Schwarz Methods for Obstacle Problems
with Convection-Diffusion Operators

YU.A. KUZNETSOV, P. NEITTAANMAKI AND P. TARVAINEN

ABSTRACT. Multiplicative and additive Schwarz methods are applied to
the algebraic problems arising from finite element or finite difference ap-
proximations of obstacle problems with convection-diffusion operators., We
show that the methods are monotonically convergent in the subset of super-
solutions. Moreover, we present a new technique, by which we obtain two-
sided approximations for the mesh contact domain. Numerical experiments
are included to illustrate the theoretical results.

1. Introduction

In this paper we consider the numerical solution of obstacle problems with
convection-diffusion operators by Schwarz-type overlapping domain decompo-
sition methods. We present here some theoretical and experimental results
reported earlier in [7].

The motivation for studying the solution of obstacle-type variational inequal-
ities by methods based on the ideas of domain decomposition is natural because
of their complementarity property [10]: the solution of the obstacle problem
decomposes the domain into two (possibly overlapping) subdomains: one, where
the solution equals to a given obstacle function, and the other, where the solution
satisfies linear equations. Several papers have been issued about overlapping
domain decomposition methods for the obstacle problems, e.g. [2], [6], [9],
but in those papers there are no considerations about taking advantage of the
complementarity property in order to construct reasonable domain partitions.
Moreover, the results of those papers are valid only for self-adjoint operators.

1991 Mathematics Subject Classification. 65K10, 65N30, 65N55.

Key words and phrases. Obstacle problems, convection-diffusion operators, Schwarz do-
main decomposition methods, two-sided approximations.

The third author was supported by Academy of Finland.

This paper is in final form and no version of it will be submitted for publication elsewhere.

251



252 YU. A. KUZNETSOV, P. NEITTAANMAKI, AND P. TARVAINEN

14 is clear that the multiplicative and additive Schwarz methods being applied
to the mesh systems arising from finite difference or finite element discretizations
of the differential problems are particular cases of block relaxation methods
with overlapping groups of unknowns. The convergence of the block relaxation
methods without overlapping applied to the algebraic obstacle problems was
studied for the self-adjoint case in [3] and for the case of M-matrices in [1}, for
instance.

This paper consists of two parts: In the first, we formulate the problem and
give the convergence results for the multiplicative and additive Schwarz methods.
We can show that methods are monotonically convergent in the subset of super-
solutions. In the second part, we introduce a new technique to obtain two-sided
approximations for the mesh contact domain. The technique can be used within
the Schwarz methods to decompose the computational domain into overlapping
subdomains with linear and obstacle subproblems. We include some numerical
experiments to illustrate this technique.

Let © be an open bounded polygon in R2. We consider the following obstacle
problem: Find u € K such that

1) a(u,v—u) > (f,v—u) YveK,

where K is a closed, convex subset of H3(Q2):

(2) K={ve H}(Q)| v> ¢ ae. in Q},

¥ € H?(Q) is an obstacle function such that ¥|sn <0, f € L%(Q),

3) (f,v)= /nfv d, ve LZ(Q),

and the bilinear form corresponds to the convection-diffusion differential opera-
tor:

4) a(u,v) = /ﬂ[a Vu-Vu+ (8- Vu)v + c uv] dS,

where the coefficients a > const > 0, b = (b1, b2) and ¢ > 0 are piecewise smooth
and bounded. Such kind of obstacle problems arise, for instance, in mathematical
modelling of the continuous casting process [10] and some problems in math-
ematical economics [1].

By using discretization techniques like finite element method with upwinding
[5], we obtain an algebraic problem, which can be represented either in terms of
variational inequalities: find u € K = {v € R™| v > 9} such that

(5) (Au,v —u) > (f,v—u) YveK,

or in the complementarity form: find u € S = {v € K| (Av—f); > 0,j =
1,..., N} such that

(6) (u—9)j - (Au—f); =0, j=1,...,N,
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where f, ¥ € RY. The subset S is called the subset of supersolutions to the
problem (5) or (6).

We assume that the matrix A is an M-matrix [11], not necessarily symmetric.
Under the assumptions made it can be shown that the problem (5) has a unique
solution [4].

2. Schwarz overlapping domain decomposition methods

Let 25 — the set of mesh nodes, or the mesh domain — be decomposed into
m overlapping subdomains Qg) such that Q, = 2, Qg), and every mesh node
z; € 5, belongs to at least one subdomain Qg). For given w € K and Qg),
i=1,...,m, we define the subset K;(w) of K by

(7) Ki(w) = {v € K| v; = wj, z; ¢ 0P},

and the operator T; : K — K such that the solution of the subdomain problem:
find z € K;(w) such that

(8) (Az,v—2) > (f,v—2) Yve€ Ki(w),
is given by
9) z2=Ti(w), i=1,...,m.

The multiplicative Schwarz method can be formulated in terms of the opera-
tors (9) in the following way: Let u® € S be given. Then for & > 0

(10) W = T (Tea (- (T () ).
Similarly, we can formulate the additive Schwarz method: Let «® € S be
given, and choose parameters w;, i = 1,...,m, such that
m
(11) > wi=1
i=1

Then, for k > 0,

(12) W = 3w (),

i=1
In [7] we have shown the following convergence results:

THEOREM 1. The multiplicative and additive Schwarz methods are monoton-
ically convergent in S.

Here, we mean by the monotonic convergence in the subset S, that for all
u® € S the algorithms generate a monotonically decreasing sequence {u*}, u* ¢
S, which converges to the solution of the problem (5).
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3. Two-sided approximations for the mesh contact domain

The aim of this section is to construct two-sided approximations within the
domain decomposition methods of Section 2 for the mesh contact domain Gy,

(13) Gh = {z; € M| uj =45},

where u* is the solution of the problem (5).
Let a monotonically decreasing sequence {u*} be given such that u* R u*

in S. If we define the mesh domains G, k > 0, by

(14) ) G;‘, = {.’Bj € Q}.l uf = t/)j},
then it follows immediately that
(15) GY CGiH k>0

To obtain outer approximations within the domain decomposition procedures,
we have to solve some additional linear problems of the following form: Assume
that G% is given for some k > 0. Find w* € R" such that

(16) wj =4, if 2; € G},
(Aw® — f); =0, otherwise.

It can be shown [7] that

an w* < u* < ub,

IA

and if we define the mesh domains é,'ﬁ, k>0, by
(18) Gk = {=; € Ul v} <95},
we can state the following conclusion [7]:
THEOREM 2. Under the assumptlions made
(19) GiconcGt, k=0,1,....

As a consequence, we notice that in each iteration step k the mesh domain can
be divided into three subdomains with respect to the two-sided approximations:
the contact subdomain G¥, the linear subdomain Qj \ 6§ and the problematic
subdomain G‘;‘, \ G%. 1t follows from the above theory and the complementarity
property, that the solution u* satisfies:

uj =¢;, ifz; € G} (the contact subdomain),

(20) ~
(Au* — f); =0, ifz; € @\ GE (the linear subdomain),

and only in G%\G% do we not know which condition of (20) the solution satisfies.
Naturally, this information can be used to construct reasonable domain partitions
for the Schwarz methods. Furthermore, these partitions can be modified within
the domain decomposition procedure.
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4. Numerical experiments

This section consists of two examples: in the first example we illustrate by
means of figures the technique of two-sided approximations, and in the second
example we compare execution times of an iterative procedure based on our
approach and a traditional solution algorithm, the SOR method with projection.

Let & be the unit square and consider the obstacle problem (1) with the
following data: f = —6, y(z) = —dist(z,0Q), a = 1, b = (5,5), ¢ = 0, where
the function dist(-, Q) means the distance from the boundary of 2. Thus,
we consider the obstacle problem with the nonself-adjoint operator. We have
solved the problem by a multiplicative procedure, and Figure 1 demonstrates the
behaviour of the algorithm. We have denoted by dots (-) the contact subdomains,
by bullets (o) the problematic subdomains, and white regions denote the linear
subdomains of each iteration step. It can be seen that the problematic subdo-
mains are efficiently reduced by the two-sided approximations. Hence, Schwarz
methods can be applied such that in the main part of the domain linear subdo-
main solvers are used.

iteration step 1 iteration step 2 (the solution)

] cseveminnrenran Py )
. e

FIGURE 1. TwoO-SIDED APPROXIMATIONS.

In the second example we consider the obstacle problem (1) in the unit square
with the data: a=1,b=(0,0),c=0,9 =0, and

f(@) = {—2, z €(3/8,5/8) % (3/8,5/8),

1, otherwise.

edy

‘We have implemented the multiplicative Schwarz procedure, which makes nse of
information from the two-sided approximations in such a way that we decompose
the computational domain into rectangular subdomains such that the problem-
atic subdomain of each iteration step is included in one of the subdomains, and
others are linear subdomains. Then we apply the multiplicative Schwarz method
such that in the linear subdomains we use fast direct solvers based on the fast
Fourier transform, and in the nonlinear subdomains we apply the line Gauss-
Seidel method. The additional linear problems needed to construct two-sided
approximations are solved by the fictitious domain method.

In Table 1 we see the execution times of the projected SOR-method [5] with
the acceleration parameter w = 1.7 {(PSOR) and the algorithm described above
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(DDM). We notice that the domain decomposition algorithm based on the two-
sided approximations works faster in all cases above. We emphasize, that this
algorithm is only the simplest possible implementation, without any acceleration.

1.

2.

3.

10.

11.

Execution times (sec.) — HP 9000/735
nxn PSOR DDM
15x 15 0.05 0.05
31x 31 0.33 0.17
63 x 63 3.37 1.53

127 x 127 42.35 19.23

TABLE 1. COMPARISON OF TWO SOLUTION ALGORITHMS.
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