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On Domain Decomposition
and Shooting Methods
for Two-Point Boundary Value Problems

C.-H. LAI

ABSTRACT. The fundamental properties of a shooting method for two-
point boundary value problems are examined and its relation to a nonover-
lapped domain decomposition technique is discussed. We address and
tackle the instability problem. We extend the nonoverlapped domain de-
composition to muitisubdomain cases and derive an efficient parallel shoot-
ing algorithm. Numerical examples include linear problems in convection-
diffusion and nonlinear problems in semiconductor device modelling.

1. Introduction

This paper intends to review some of the fundamental properties of a shoot-
ing method for two-point boundary value problems and the connection of these
properties to domain decomposition methods. Idea related to this subject can
be found in [5] [6]. Similar approach for two-point boundary value problems

- was reported in [4]. Attention is restricted to the following class of second order
ordinary differential equations

) .
) %+Q(m,¢,%)=O€Q={x:a<x<b},
subject to boundary conditions of either

do(b ;
(2) ¢((L) = ¢a7 -% = ¢b7
or
(3) ¢(a') = ¢a 3 ¢(b) = ¢ba
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where ¢,, ¢, and ¢y are given constants. Assume that the function Q(z, ¢, d¢/dx)
is continuous and is Lipschitz bounded so that unique solution of (1) exists for
each of the above two types of boundary conditions.

2. Elementary Properties of a Shooting Method
A shooting method for (1) subject to boundary conditions (2) can be obtained

by choosing a trial value A\, and then by solving the initial value problem

2
@ I = Q@ u D), u(@) = g, v(a) = Ao

We assume that the solution u(z;A) of (4) does not suffer from any instabil-
ity. A family of solutions F'{u(z; )} is obtained subject to the variation of the
parameter )\,. This parameter is adjusted and the initial value problem (4) is
solved with the adjusted A, until the derivative of the solution of (4) at z = b
is sufficiently close to ¢}. It is clear at this stage that finding the correct value
of )\, is equivalent to finding a root of the nonlinear function [1] [3],

_Ou(b; A,) ,
) ) = S — g = 0.
To approximate the root of f(A,;) = 0, we write the equation as
(6) X = Ga) = A — af(Aa),

and consider the fixed point iteration scheme
(7) AP = A — afW),n=0,1,2 ...

Assuming G satisfies a Lipschitz condition on A, and that a suitable choice of « is
being used so that the sequence {)\,(l")} is a converging sequence which converges
to a root of (5). A treatise on the choice of & can be found in [1] [2].

One disadvantage of the above shooting method lies in the fact that an initial
value problem has to be solved at each step of the iteration scheme (7). The
flexibility of using parallel architecture is very restricted because of the nature
of the initial value problem. Since the initial value problem (4) has a unique
solution for each value of )\, and if the iteration scheme (7) converges to a root
of (5), then at each step of the iteration there exists a one-to-one correspondence
between A and Agn) = u(b; AM™). Hence we have,

PROPOSITION 1. For any converging sequence {A,(ln)} which converges to a
root of the nonlinear equation f(;) = Q‘ﬂ(%’\il — ¢}, = 0 such that u(; )\g")) 18
the solution of the intial value problem,

(8 T Q%) wa) = o, i) =,
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there exists a corresponding converging sequence {)\2") = u(b; Afz"))} such that
the solution v(z; )\I()n)) of the boundary value problem

d2v dv (n)
(9) d_;z;2 + Q(mov’ _CE) - 0? v(a) - ¢a 3 'U(b) - )‘b ?

is equal to the solution u(x; ,\EJ‘)) of the initial value problem.

CoroLLARY. For any converging sequence {)\,(,n) = /\1(,") - ,Bg()\l(,n_l))} which
converges to a root of the nonlinear equation g(hy) = Qﬂ;;ﬁl — ¢, = 0 where
v(z; /\I(,n)) is the solution of (9), then there exists an o = a(f) such that the
solution of the boundary value problem (9) is equal to the solution of the initial

a0 Sv@A)
value problem (8) with Ag” = — .

EXAMPLE 1. The initial value problem
d’u du

_— = _ = / = (n)
2 = Vg ula) = ¢, w'(a) = AV,
has solution -
Ao’ €1 — e
Ay — ¢ (e
'U:(.'E, Aa ) = ¢a, + v ( prevs
The boundary value problem
v dv (n)
2z Yz = 0, v(a) = ¢a, v(b) = N,

has solution
MY~ ¢a

(@ NY) = da + Ly

(e — 7).

N (n) Bu(aA{™) . - (n) .
Substituting A" = -——Z ¢ into the expression for u(z;Ag”), we obtain
v(z) = u(z). From the expression /\l(,"“) = /\,(,n) - ,Bg(A,(,n)), we can deduce
that )u(;nﬂ) =AM - af(/\g")),wherea = ,H—e;ﬂﬁj—':m.

Since the stability of (9) is easier to control than that of (8) therefore it seems
better to work with (9). It follows from the Corollary that we can establish a
variant of the above shooting method as following,

PROPOSITION 2. The solution of (1) subject to boundary conditions (2) can be
obtained by finding a root of the nonlinear function g(\) = Mg—;"ﬁ - ¢, =0,
where v{z; Ap) is the solution of the boundary value problem

o ,
O 4 Q) = 0, 0(@) = ga, v) = .

Proposition 2 complicates the solution process of (1), but is used in the context
of a domain decomposition. The advantage of the present variant is that (10)
involves solutions of boundary value problems and the instability introduced by
initial value problems can be eliminated.

(10)
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3. A Nonoverlapped Domain Decomposition Method

For simplicity, the following two-point boundary value problem is considered,

¢ d¢

-7 ¥y Q = .
(11) Az + Q(m’¢7 da:) 0 € {33 a < z < C},
subject to Dirichlet boundary conditions ¢(a) = ¢, and ¢(c) = ¢.. We
construct two nonoverlapped subdomains @ = {& : a < z < b} and

Qy = {z : b < z < ¢} and the interface of Q; and Q3 isT12 = {z : z = b}.
For the problem given by (11), the coupling at the interface T';5 is well known
to be (a) the continuity of the function and (b) the continuity of the derivative
of the function at that point.

It is obvious that one can use Proposition 2 to solve the two subproblems
provided we know the value of ¢}. The situation now is analogous to a shooting
exercise in which we require the two shells fired from two artillery men based at
z = aand z = cto collide at the interface I'1s. We can interpret the above
coupling conditions as the height and the slope of the trajectory at the point of
collision. Application of Proposition 2 is achieved by simply reducing the number
of variational parameters to one, in which case we have a one parameter nonlinear
equation of which the solution is required. This discussion is summarised in the
following Proposition.

PROPOSITION 3. The boundary value problem (11) is replaced by the following
two subproblems,

d? d
12 T8 4 Qe %) = 0 € 0, wo) = o), m®) =1,
and

d?u d .
(13) =2 4+ Qaun D) = 0 € M,y wld)

A, uz(c) = ¢(c) ,
and the nonlinear function
8u1 (b, A) _ B’UQ (b; )\)

, D) = = 0.

(14) @ 9z R 0

The two subproblems together with the nonlinear function is a variant of shooting
method where the matching is chosen at z = b.

~ One advantage of the current method compared with the previous shoot-

ing method is that the two subproblems can be decomposed and indepently
computed, thus ensuring intrinsic parallelism. The other advantage is that
the subproblems are now boundary value problems which can avoid inétability
caused by solving initial value problems. Furthermore each of the subproblems
is smaller than the original problem and is easier to solve. In order to solve
(14), we use the fixed point iteration scheme, A"+ = A" — o, D(A(), where
Qp = 1 [DACD)/IDOAM) — DA™MD, details of which can be found
in {6].
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ExAMPLE 2. Consider —giwg — ’y% = 0, subject to ¢(0) = 0, ¢(1) = 1.
Herey » land b = 1 — %, "exact subsolver” means an analytic solution
is obtained in the corresponding subdomain, and kb is the mesh size in a finite
difference scheme. In the case of finite difference method, we use the same h in
both of the subdomains.

v on AW ¢(b) lg(b) — A"
10 2 036785 0.36785 0.37 x 1077
30 2 036788 0.36788 0.81 x 1077
50 2 0.36788 0.36788 0.37 x 10~°

Table 1 : Convergence results using an exact solver.

Boon A |g(b) — A
0.02 3 0.36663 0.12 x 10~2
0.00 3 0.36754 0.31x 1073
0.005 3 0.36777 076 x 10~*
0.0025 3 0.36783 0.17 x 10~

Table 2: Convergence results for v = 10 using a 2nd order difference scheme.

4. A Multiple Shooting Method

If the process in Proposition 3 is carried out recursively for every subsequent
subdomain, then we have Qp = {z: b1 <z <bi}, k=1,2,...,5+ 1, where
bp = a and bs41 = c¢. Here Q’s denote a set of non-overlapped subdomains.
The interfaces are located at £ = by, k = 1,2,... , s where the solutions at these
interfaces are required. Since each pair of neighbouring subdomains is exactly
the same as that given by Proposition 2, the multi-subdomain case derived from
the above discussion can be considered as a multiple shooting technique.

PROPOSITION 4. The boundary value problem given by (11) is replaced by the
following s + 1 subproblems,
dZ’I.Lk

d:
(15) a2 T Q(‘v’“k’%) =0 € O, uplbe-1) = Ae—1, ur(be) = As,

fork=1,2,... ,s+1, with u1{a) = ¢(a) and usyi{c) = ¢(c}, and the nonlinear
vector function

Oui(bi; A)  Oupr1(br; A)
Oz Oz
where A = [A1 Ay ... As] is an s-vector. These subproblems together with the

nonlinear vector function is a multiple shooting algorithm where the matching is
done at the interfaces.

(16) D) = [De(N)] = |

=0

In order to solve D()\) = 0, a fixed point iteration scheme similar to that
given above is used. Here o, can be chosen either as the matrix [J(A(®)]~!
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where J(A©®) = D'(A(®) which reduces the scheme to Newton’s iteration, or as
a scalar adaptive parameter given by

| DACD) ||z
DA™Y = DAED) |,

Details of the choices can be found in [6].

amn Oy = Qg

ExaMPLE 3. We solve the same problem as that given by Example 2 using
an analytic subproblem solver and present the number of iterations, n, required
to update the interfaces which are evenly distributed across the physical domain.

s\~ 10 20 30 40 50
3 i4 156 156 13 11

7 23 21 18 20 20
15 37 35 34 37 31
31 96 62 58 51 52

Table 3: Convergence results using a,, defined in (17)."

First, we construct the Jacobian matrix J(A(®)) which requires 2s subproblem
solves. Each iteration involves s + 1 subproblem solves in order to compute
D(\™). By taking a,, = [J(A®)]™!, we require n = 2 iterations to update the
interfaces. We achieve an efficient multiple shooting algorithm in a coarse-grain
parallel computing environment provided we can invert J(A(®) efficiently. Sec-
ond, we use the scalar adaptive a, in (17) and record n in Table 3. Here we do
not invert J(A(?)) but the penalty is an increase in n. However the simple com-
munication which involves only exchanging neighbouring information provides
another efficient multiple shooting algorithm in a coarse-grain parallel comput-
ing environment. We observe that the number of iterations n is independent of
the problem type, but increases as the number of interfaces s increases.

EXAMPLE 4. A nonlinear electrostatic problem [7] in normalised variables is
tested. The problem is described by (11) with a = O and ¢ = 180 and is

subjected to boundary conditions ¢(0) = 0 and ¢(180) = 10. The function Q
is given as
Q — I‘(m) + e(¢+—¢) —_ €(¢'—¢—) .

Here
T = — Ne™/¢ 4 Ne-(c=/e - 1480
1 — et
T'(a T 2
b5 = o) + 1 {19 (*(2")) +1b,

oo =0 -m {19 (-If-(;—))2+1 ,

We evenly distribute the interfaces across the entire domain, and we use equal
meshes and a second order difference scheme throughout the subdomains. We
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use the adaptive a,, as that given above. Table 4 records the number of iteration,
n, required to update the interfaces.

s\ h 2 1 05 025 0.125
2 8§ . 8 7 8 8
4 15 15 14 14 12
8 29 30 24 24 20
14 358 124 100 81 75

Table 4: Convergence results for the nonlinear electrostatic problem.
Note that the number of iterations n is independent of the mesh size h, but is
dependent of the number of interfaces s. It is also observed that n ~ 3s for
small values of s and that n becomes unreasonably large for large values of s.

5. Conclusion

A framework for domain decomposition methods is built on the properties of
a shooting method. A two subdomain case was presented and the convergence
results are the same as the shooting method. The two subdomain case is extended
to the multi-subdomain case. The multi-subdomain case provides an efficient
multiple shooting algorithm on coarse-grain parallel architectures. Linear and
nonlinear examples are included.
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