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ROBUST METHODS FOR HIGHLY
NONSYMMETRIC PROBLEMS

W. LAYTON, J. MAUBACH AND P. RABIER

ABSTRACT. We consider the solution of linear systems arising from discretizations
of problems which are highly convection dominated in some subregions and diffusion
dominated in others. For such problems, robusiness, meaning uniformity in the
problem parameters for consistent discretizations, rather than asymptotic optimality
in h, is of paramount importance. This report presents a particularly simple method
which is provably robust for highly nonsymmetric and anisotropic problems.

1. Introduction

A large number of interesting problems in scientific applications involve operators
that are both highly nonsymmetric and highly anisotropic. There continues to be a
great deal of research into adapting optimal order solution methods from symmetric
positive definite problems to these interesting ones so that their “robustness” is
incrementally improved (see other articles in this proceedings). The authors have
been attacking these problems from the opposite point of view, namely: developing
optimally robust methods for the problems’ singular limits and then attempting
to decrease their serial or parallel complexity for (simpler) problems. This report
gives an overview of some results to date, the basic algorithms developed and one
interesting computational example.

Semiconductor problems and fluid dynamics problems lead to (linearized) con-
vection diffusion equations which are highly convection dominated in some sub-
regions and diffusion dominated in others. The involved velocity field typically
has stagnation points and closed loops which do not permit “streamwise” solu-
tion strategies. With these difficulties in mind, consider the problem: seek u(z,y)

satisfying:

(1.1) -V - (k(z,y)Vu) + b(z,y) - Vu+g(z,y)u = f(z,9) inQ,

subject to u = 0 at 3. The coefficients are assumed to satisfy:

(12) 0 < Fmin < k(@,9) < hax ST, 9= 5V B > guin >0,

and § is a planar polygonal domain. Accurate approximation of (1.1) usually re-

quires adaptivity [14,15], nonlinear discretizations [9] or subgridscale modelling [4],
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and in all these approaches, (re)assembly can often dominate linear system solution
costs [16]. Therefore, we consider an elementwise data-parallel finite element solu-
tion procedure from [11,12]. Massive parallelism [8, 17, 18], point adaptivity [7,8]
and nonlinear discretizations [4,6] are handled trivially by the present procedure
which uses elements as the logical units. The new results presented herein state that
the method introduced in [11, 12] is optimally robust for (1.1), (1.2). Specifically,
the solution procedure converges uniformly in k(z,y) (the cell Reynolds or Péclet
number), even for centered discretizations! In Theorem 1.1 the parameter § inter-
polates between the usual (centered) Galerkin method (6§ = 0) and the streamline
diffusion finite element method (6 = h).

Let us postpone the presentation of the algorithm until Section 2. The following
theorem, proven in [7] shows that the Parallel FEM algorithm converges uniformly
in both the anisotropy (kmax/kmin) and the Péclet number (kmax)- The technical
condition upon k(z, y) states that k(z,y) should not change from near zero to near
1 inside of elements, i.e., such drastic material discontinuities should be followed
by meshlines. This is certainly good computational practice but we do not know if
it is necessary or an artifact of our method of proof.

Theorem 1.1. Assume that the finite element triangulation satisfies the usual
minimum angle condition, and that in addition inside each triangle e either: 0 <
kmin,e < k(iF,y) S kmax,e < Clh or CZh < kmin,e < k(w, y) < kmax,e < 1. Let T
denote the iteration operator of the Parallel FEM algorithm, |- |5 be the Euclidean
matrix norm and let p be the algorithm acceleration parameter. Then, provided p
is scaled as p = pgh,

sup [Tl2 <1—ch.
0<kmin <k(z,y) <kmax <1
OSkmax/kminSOO,O_Saﬁh

O

We emphasize that this holds even for centered discretizations so that robustness
is not an artifact of a special discretization which implicitly increases the size of the
matrices’ symmetric part. Further, the basic methods and results have recently been
extended to finite difference and finite volume discretizations in [1,2]. The parallel
FEM algorithm also is attractive as a combination pre- and post-conditioner. This
is described in Section 2 and developed fully in [5].

2. The Algorithm

Let IT*(Q) denote an edge-to-edge triangulation of the polygonal domain €2, in
our tests usually generated self-adaptively as in [14, 15]. Without loss of general-
ization, let S* denote the span of the 3—node nonconforming linear element; all the
results below extend directly to higher order elements as no M-matrix structure is
used. Now, focus on a one parameter family of discretization methods {kmax < O(h)
and é = O(h) gives streamline diffusion; 0 < k(z,y) < 1 and § = 0 gives the usual
Galerkin method), given by: seek u* € S” satisfying

By . -0 A
(2.1) eenﬂh(m{ae(u ,0) — {f,v+ 6b - Vo). =0, for all v € S*,
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where (f,v)e = [, fvdz, and a.(u,v) := [ {kVu-Vv+6b-Vub-Vu+(g—3V-
(b-+6gb)uv + (1 — 8g)[b - Vuv ~ b - Vou }dz is the usual elemental bilinear form,
explicitly skew-symmetrized. Let N; denote the nodes in the mesh (situated at
the mid-edges) and ¢; the associated nodal basis functions (which have support on
two triangles only). Color the triangles in I1*(£2) with two colors (Red and Black,
traditionally). If the graph-degree of each interior vertex of IT*(2) is even it is
trivially possible to separate [2,3,10,11] the triangles (no two same-color triangles
share an edge), otherwise the coloring algorithm presented in [3] is used; see [3]
for details. We focus on the case of even degree interior vertices for compactness
of presentation. Split the stiffness matrix A and right hand side vector f into
A=Ap+ Ap and f = fr+ fB, as follows:

AryBlig = eRedz/;Blackae(d)j #0)» frymli = eRedz/]Black(f’ 93+ &b Vo;)e.

One key observation is that the nodes can be ordered such that the 3 nodes in each
Red (resp., Black) triangle are consecutively numbered causing Ag (resp., Ag) to
be block diagonal with blocks of the 3 x 3 element matrices corresponding to Red
(resp., Black) triangles. Let these two orderings be called the Red (resp., Black)
ordering. Reordering corresponds to a local communication on a mesh connected
array of processors [8, 17, 18].

Algorithm: Parallel FEM. Given ¢} and p > 0 compute until satisfied
1. Calculate dg := (pI + Ag)™*[fs — (A ~ pI)ck)]
II. reorder c’fz —dp

IIL Calculate dg := (oI + Ap) Y [fr — (Ar — pI)ck)

IV. reorder c’fB“ +—dp

Upon convergence, set in consistent node ordering, ¢ = cp + ¢g, then Ac = f.
Note that as each (pI &= Ag/p) is block 3 x 3 diagonal each step is embarassingly
parallel. A good choice of p is p = ([Mmax(4e) * [Mmin(Ae))/?. This algorithm is
precisely the D’Yakunov operator splitting method [13], with the new splitting of
[11, 12]. ,

The above algorithm is of the domain decomposition type in that each block
in (pI + Ag/g) is associated with a subdomain (i.e., a single Red or Black ele-
ment). There are neither overlap of subdomains nor interface conditions. Further,
in cost per iteration, ability to parallelize and case of implementation it is more
akin to simple relaxation methods. The next result follows immediately from the

Algorithm.

Proposition 2.1. The per iteration complexity of the Parallel FEM algorithm is
as follows. (a) Computational complexity: per triangle one 3 x 3 matrix vector
multiply, one 3 x 3 system solve and one 3-vector addition. (b) Communication
complexity: two local communications on the physical mesh. 3
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Discretization (2.1) leads to the usual linear system Ac = f for the nodal degrees
of freedom. The previous solution algorithm reduces local errors very quickly so
it is natural to study it both in combination with Krylov subspace methods and
as a smoother for multilevel methods, especially on serial machines. Since (2.1)
may yield a highly non-normal system, reduction of the spectral radius of A is not
sufficient to reduce condg(A) = |Al2|A~1|5. This reduction is accomplished through
a judicious combination of preconditioning with (oI + Ag)~* and postconditioning
with (pI + Ag)™!, leading to the system Kd = g, where

(81) K:=(pI+Ar) " A(pI + Ap)™!, d:= (oI + AB)c, g:= (ol + Ar)™f.

The following basic result is given in [5] along with extensive experiments.

Theorem 3.1. Under the assumption of Theorem 1.1, the pre- and postcondi-
tioned system (3.1) has condition number O(h™!) uniformly in k(z,y), kmax/kmin
and é6:
sup (K2l K™ 2) < AL
0<k<1

0= Ko/ Fomin <00
0<6<0(R)

O

To date we have no experience using the parallel FEM algorithm as a smoother
in a multilevel method.

4. An Illustrative Example

We have attempted to construct a “model” problem which captures some in-
teresting features of internal flow problems. To this end, let Q := (—1,1)%, 2 ==
z% + y?, and define k(z,y) = 1 if r > 1 while k(z,y) = ky for r < 1. Let the
velocity field b be given by b(z,y) := [-y¢(r),z¢(r)]T with ¢ a smooth function
satisfying ¢(r) = 0 for r > 1, here chosen to be ¢(r) := 1 —r? for r < 1. Note
that div b(z,y) = 0. We chose g{z,y) = 2 and f(z,y) = 1ifr < 1/2 and 0 if
r > 1/2. The true solution is a rotational pulse ©v 2 1/2 if r < 1/2 and u 2 0 if
r>1/2 with an O(\/El—c ) transition layer, thus at least an asymptotic solution was
available for comparisons. Note that this problem has: closed loops and stagna-
tion points in the convection field, characteristic layers, neither inflow nor outflow
boundaries and conductivities k varying from O(1) to quite small. In [7], we have
tracked the numbers of iterations as ky — 0, keeping h fixed, giving the result
predicted by Theorem 1.1. Here, we present a slightly more interesting test, which
also indirectly verifies robustness. For elements with polynomial degree 7 the range
O(h) < kf < O(h™*?) is the critical one. Using nonconformity linear elements
we fix k; = h?/10 and solve the linear system Ac = f with varying meshwidths,
taking p = h. Theorem 1.1 predicts O(h™!) iterations exactly as observed in Table
1. If the method were not robust, for example if the number of iterations varied
as O(k;°h=") then with k; = h?, O(h~(1+29)) iterations would be observed. Thus
Table 1 verifies both robustness and the complexity bound of O(h™!) iterations.
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Bl Centered Galerkin Streamline Upwind
6 =0 case 6 = h case

64 167 111

32 104 72

16 60 46

8 30 23

Table 1. Number of Iterations of the PFEM Algorithm.
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